Utility Indexes for Composite Scores

Robert L. Brennan

May 1, 2015
Revised: September 10, 2016
Brennan Utility Indexes for Composite Scores

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>iv</td>
</tr>
<tr>
<td>1 Components of Reliability and U</td>
<td>1</td>
</tr>
<tr>
<td>2 Relative Utility Index U_r for Composite Scores</td>
<td>4</td>
</tr>
<tr>
<td>3 Estimating U_r for Raw Scores and U_{r} for Scale Scores</td>
<td>5</td>
</tr>
<tr>
<td>3.1 Raw Scores</td>
<td>5</td>
</tr>
<tr>
<td>3.2 Scale Scores</td>
<td>6</td>
</tr>
<tr>
<td>3.2.1 Variance of T_X</td>
<td>6</td>
</tr>
<tr>
<td>3.2.2 Covariance of T_X and Z</td>
<td>7</td>
</tr>
<tr>
<td>3.3 Estimating $\sigma^2(\bar{E})$</td>
<td>7</td>
</tr>
<tr>
<td>3.3.1 Linear Transformations</td>
<td>8</td>
</tr>
<tr>
<td>3.3.2 Non-linear Transformations</td>
<td>8</td>
</tr>
<tr>
<td>4 Examples</td>
<td>8</td>
</tr>
<tr>
<td>4.1 SAT® Background</td>
<td>9</td>
</tr>
<tr>
<td>4.2 Computation of U_r for H vs. R in the SAT®</td>
<td>9</td>
</tr>
<tr>
<td>4.3 PSAT®</td>
<td>12</td>
</tr>
<tr>
<td>5 Concluding Comments</td>
<td>12</td>
</tr>
<tr>
<td>5.1 Definitions of Z_i, X_i, w_i, and v_i</td>
<td>13</td>
</tr>
<tr>
<td>5.1.1 The w_i Weights</td>
<td>13</td>
</tr>
<tr>
<td>5.1.2 The v_i Weights</td>
<td>14</td>
</tr>
<tr>
<td>5.2 Transformations of Component Parts of U_r</td>
<td>15</td>
</tr>
<tr>
<td>5.3 Proportionality Assumption for Scale-score Error Variances</td>
<td>15</td>
</tr>
<tr>
<td>5.4 Special Case: Decisions About Subscores</td>
<td>17</td>
</tr>
<tr>
<td>5.5 Multidimensionality</td>
<td>17</td>
</tr>
<tr>
<td>5.6 Caveats</td>
<td>17</td>
</tr>
<tr>
<td>6 References</td>
<td>17</td>
</tr>
</tbody>
</table>
Abstract
Suppose there is a battery of tests, each of which generates a test score for examinees. Suppose, as well, that an additional score denoted X is created based on examinee performance on a subset of the items from each of the tests in the battery, or some of them. This paper extends the basic principles of classical test theory and the approach taken by Brennan (2011) to address the question of whether or not it is preferable, in a certain sense, to estimate true scores on X using X itself or using some composite, Z, that is a weighted combination of scores for the tests in the battery. The theory presented here is quite general in that it applies to both raw scores and scale scores, and it permits the user to choose how the component parts of Z and X are weighted. A special case of this theoretical framework gives the Haberman(2008)/Brennan(2011) results for subscores.
Suppose that S is a subscore of Y, in the sense that S is entirely contained within Y. Brennan (2011) considers a procedure for determining whether or not, in a certain sense, Y is a better/worse estimate of true-score for S (i.e., T_S) than S itself. His results mirror those of Haberman (2008), although the two researchers employ different approaches to arrive at their conclusions. In short, the Haberman/Brennan papers provide a basis for deciding whether or not the subscore S provides “more useful” information about T_S (in a certain sense) than that provided by Y.

In Brennan’s (2011) procedure, the operational definition of “more useful” involves a comparison of reliability of S, as defined by

$$\rho_S^2 = \rho^2(T_S, S) = \left[\frac{\sigma(T_S, S)}{\sigma(T_S) \sigma(S)} \right]^2,$$

with

$$U = \rho^2(T_S, Y) = \left[\frac{\sigma(T_S, Y)}{\sigma(T_S) \sigma(Y)} \right]^2,$$

where U is called a utility index. The basic notion is that S is preferred if $\rho^2(T_S, S) > \rho^2(T_S, Y)$, and Y is preferred if $\rho^2(T_S, Y) > \rho^2(T_S, S)$.

This paper applies the same type of logic, but in a more complex context. Specifically, suppose there is a battery of tests, each of which generates a test score for examinees. Suppose, as well, that an additional score denoted X is created based on examinee performance on a subset of the items from each of the tests in the battery, or some of them. Since the X score is not associated with an additional test that is distinct from the tests in the battery, X might be called a pseudo test or cross-test.

This paper extends the basic principles of classical test theory (see Feldt & Brennan, 1989, or Haertel, 2006), and the approach taken by Brennan (2011), to address the question of whether or not it is preferable, in a certain sense, to use scores on X as an estimate of T_X or to use some composite Z that is a weighted combination of scores for the actual tests in the battery. As discussed later, a special case of the framework provided in this paper gives the Haberman/Brennan results for subscores.

It should be noted that the disattenuated correlation $\rho(T_X, T_Z)$ does not address the issues discussed in this paper. The magnitude of the disattenuated correlation tells us the extent to which the constructs measured by X and Z are linearly related through their true scores. It is entirely possible for X and/or Z to be quite unreliable even if $\rho(T_X, T_Z) = 1$. In particular, the disattenuated correlation tells us nothing about whether the observed score for X or Z is a better estimate of T_X (or T_Z, for that matter). By contrast, the goal in this paper is specifically to identify whether X or Z is a better estimate of T_X.

1 Components of Reliability and U

Suppose there exist k tests, each of which generates a score Z_i. Suppose, as well, that an additional test score is created that consists of examinee performance...
on a subset of items from at least one, and possibly all, of the \(k \) tests. Each of these subsets of items is designated \(X_i \). We let \(Z_i \) denote not only test \(i \) but also scores for test \(i \); similarly, \(X_i \) stands for both a subset of items on test \(i \) and scores for the subset. For now, it is easiest to think of \(Z_i \) and \(X_i \) as raw scores, although the theory presented here makes no such assumption. Later, we consider special issues that can arise with scale scores.

Let the composite of full-length tests be

\[
Z = w_1 Z_1 + w_2 Z_2 + \cdots + w_k Z_k, \tag{3}
\]

where the \(w_i \) are nominal weights (\(w_i \geq 0 \) for all \(i \)) specified by the user. Similarly, let the composite of subsets of items from the \(Z_i \) be

\[
X = v_1 X_1 + v_2 X_2 + \cdots + v_k X_k, \tag{4}
\]

where the true and error scores associated with \(X \) are

\[
T = v_1 T_1 + v_2 T_2 + \cdots + v_k T_k, \tag{5}
\]

and

\[
E = v_1 E_1 + v_2 E_2 + \cdots + v_k E_k, \tag{6}
\]

and the \(v_i \) are nominal weights (\(v_i \geq 0 \) for all \(i \)) specified by the user. Note that the theory presented here does not require that there be any relationship between the \(w_i \) and \(v_i \) weights. Also, if \(v_i = 1 \), this does not mean that \(X_i = Z_i \); rather, \(v_i = 1 \) means that the score for the \(X_i \) subset of items from \(Z_i \) is weighted 1 in obtaining the composite \(X \).

Formulating the theory in terms of the weights \(w_i \) and \(v_i \) leads to complicated equations at times, but the weights add considerable flexibility to the theory. Clearly, for example, \(Z \) can be any weighted combination of any (or all) of the \(Z_i \). In most practical contexts, it is likely that all the \(v_i \) would be set to 1 but, again, the theory presented here makes no such assumption.

\(T_i \) is the true score associated with \(X_i \); i.e., \(T_i \) is the expected value of \(X_i \). It is important to note that the true score for the full set of items associated with \(Z_i \) is not necessarily the same as the true score for the subset of items associated with \(X_i \). Note also that, for the utility indexes considered in this paper, we do not need to make explicit reference to true scores or error scores for the \(Z_i \). Therefore, there is no ambiguity in letting \(T_i \) be the true score associated with \(X_i \), with \(E_i \) being the error associated with \(X_i \). In particular, to simplify notation, in this paper \(E_i \) will be used as a shorthand version of \(E_X \). Similarly, \(E \) means \(E_X \).

The numerator of the utility index in Equation 2 is \([\sigma(T_X, Z)]^2\), where

\[
\sigma(T_X, Z) = \sigma[(v_1 T_1 + v_2 T_2 + \cdots + v_k T_k), (w_1 Z_1 + w_2 Z_2 + \cdots + w_k Z_k)], \tag{7}
\]

which involves \(k^2 \) terms that could be displayed in a \(k \times k \) matrix in which the off-diagonal elements are

\[
\begin{align*}
\sigma(v_i T_i, w_j Z_j) &= v_i w_j \sigma[X_i - E_i, Z_j] \\
&= v_i w_j [\sigma(X_i, Z_j) - \sigma(E_i, Z_j)] \\
&= v_i w_j \sigma(X_i, Z_j), \tag{8}
\end{align*}
\]
and the diagonal elements are

\[
\sigma(v_i T_i, w_i Z_i) = v_i w_i \sigma(T_i, Z_i)
\]
\[
= v_i w_i \sigma[(X_i - E_i), Z_i]
\]
\[
= v_i w_i [\sigma(X_i, Z_i) - \sigma(E_i, Z_i)]
\]
\[
= v_i w_i [\sigma(X_i, Z_i) - \sigma^2(E_i]).
\]

(9)

It is important to remember that \(X_i\) is the score for a subset of the items in \(Z_i\), and \(E_i\) represents the errors in \(X_i\), not \(Z_i\). Equation 10 follows from Equation 9 because: (a) there are two sets of errors in \(Z_i\)—errors associated with the items in \(X_i\) and errors associated with the remaining items in \(Z_i\); (b) the covariance of \(E_i\) and the errors associated with the remaining items in \(Z_i\) is 0; and (c) the covariance of \(E_i\) and the errors in \(Z_i\) associated with \(X_i\) is simply the variance of \(E_i\). In essence, then, \(X_i\) and \(Z_i\) share some of the same error; stated differently, \(X_i\) and \(Z_i\) have correlated error, because the items in \(X_i\) are a subset of the items in \(Z_i\). This fact is central to the theoretical framework of this paper.

Using Equations 8 and 10 in Equation 7, we obtain

\[
\sigma(T_X, Z) = \sum_{i=1}^{k} v_i w_i [\sigma(X_i, Z_i) - \sigma^2(E_i)] + \sum_{i \neq j} v_i w_j \sigma(X_i, Z_j),
\]

(11)

and the square of this equation gives the numerator of \(U\) in Equation 2. The denominator is \(\sigma^2(T_X) \sigma^2(Z)\), where

\[
\sigma^2(T_X) = \sigma^2(v_1 T_1 + v_2 T_2 + \cdots + v_k T_k)
\]
\[
= \sum_{i=1}^{k} v_i^2 \sigma^2(T_i) + \sum_{i \neq j} v_i v_j \sigma(T_i, T_j)
\]
\[
= \sum_{i=1}^{k} v_i^2 [\sigma^2(X_i) - \sigma^2(E_i)] + \sum_{i \neq j} v_i v_j \sigma(X_i, X_j),
\]

(12)

and

\[
\sigma^2(Z) = \sigma^2(w_1 Z_1 + w_2 Z_2 + \cdots + w_k Z_k)
\]
\[
= \sum_{i=1}^{k} w_i^2 \sigma^2(Z_i) + \sum_{i \neq j} w_i w_j \sigma(Z_i, Z_j).
\]

(13)

Similarly,

\[
\sigma^2(X) = \sigma^2(v_1 X_1 + v_2 X_2 + \cdots + v_k X_k)
\]
\[
= \sum_{i=1}^{k} v_i^2 \sigma^2(X_i) + \sum_{i \neq j} v_i v_j \sigma(X_i, X_j).
\]

(14)
Equations 11–14 are expressed in terms of variance and covariances for the \(X_i \) and \(Z_i \), the \(v_i \) and \(w_i \) weights, and the error variances associated with the \(X_i \). As such, these are very general expressions. If \(X \) and \(Z \) are determined directly for each examinee, then it is straightforward to obtain \(\sigma^2(X) \) and \(\sigma^2(Z) \), and simplified versions of Equations 11 and 12 are

\[
\sigma(T_X, Z) = \sigma(X, Z) - \sum_{i=1}^{k} v_i w_i \sigma^2(E_i),
\]

and

\[
\sigma^2(T_X) = \sigma^2(X) - \sum_{i=1}^{k} v_i^2 \sigma^2(E_i).
\]

Note that each of the \(\sigma^2(E_i) \) is associated with items from a different \(Z_i \). It follows that the \(\sigma^2(E_i) \) are associated with different constructs (or fixed strata) which may be measured by different types of stimuli and/or items. Therefore, it may be reasonable to use different procedures to estimate the different \(\sigma^2(E_i) \). This matter is discussed more fully later.

2 Relative Utility Index \(U_r \) for Composite Scores

The magnitude of \(U \) alone does not tell us much about the merits of using \(Z \) rather than \(X \). It seems clear that we need to compare \(U = \rho^2(T_X, Z) \) to some other statistic that involves \(X \). An obvious comparative statistic is the reliability of \(X \), \(\rho^2_X = \rho^2(T_X, X) \). A convenient form for this comparison of \(U \) and \(\rho^2_X \) is

\[
U_r = \frac{U}{\rho^2_X} = \frac{\rho^2(T_X, Z)}{\rho^2(T_X, X)}.
\]

If \(U_r > 1 \), then \(Z \) is preferable to \(X \) as an estimate of \(T_X \); if \(U_r < 1 \), then \(X \) is preferable to \(Z \) as an estimate of \(T_X \), given the theory presented here.

\(U_r \) in Equation 17 can also be expressed as

\[
U_r = \left[\frac{\sigma^2(T_X, Z)}{\sigma^2(T_X) \sigma^2(Z)} \right] \left[\frac{\sigma^2(T_X) \sigma^2(X)}{\sigma^2(T_X, X)} \right] = \left[\frac{\sigma^2(X)}{\sigma^2(Z)} \right] \left[\frac{\sigma^2(T_X, Z)}{\sigma^2(T_X, X)} \right] = \left[\frac{\sigma^2(X)}{\sigma^2(Z)} \right] \left[\frac{\sigma(T_X, Z)}{\sigma^2(T_X)} \right]^2,
\]

since

\[
\sigma(T_X, X) = \sigma(T_X, T_X + E_X) = \sigma^2(T_X) + \sigma(T_X, E_X) = \sigma^2(T_X),
\]

because true and error scores are uncorrelated.

\[
^3\text{Note that the form of the relative utility index } U_r \text{ in Equation 17 is different from that in Brennan (2010), in which } X \text{ is a subscore—i.e., one of the } Z_i.
\]
3 Estimating U_r for Raw Scores and \tilde{U}_r for Scale Scores

The next two subsections focus primarily on estimation of the $\sigma^2(E_i)$ (the error variances associated with the subsets of items in X) in the equations for $\sigma(T_X, Z)$ and $\sigma^2(T_X)$. Once these estimates are available, Equations 11–14 can be used to obtain U_r in Equation 18. The first subsection considers raw scores. The second considers scale scores—particularly, scale scores that are non-linear transformations of raw scores.

In this and subsequent sections, notational distinctions are not made between parameters and estimates, because doing so renders too many equations much more complicated than necessary. The context of the discussions makes the intended meaning clear.

3.1 Raw Scores

If the Z_i and X_i are raw scores in the traditional sense of number (or proportion) of items correct for dichotomously-scored items, or number (or proportion) of points for polytomously-scored items, then the estimation of $\sigma(T_X, Z)$ and $\sigma^2(T_X)$ is not too complicated. Doing so, however, requires careful attention to estimating the k values of $\sigma^2(E_i)$.

Recall that $\sigma^2(E_i)$ is the error variance associated with X_i, not Z_i (although the items come from Z_i). Therefore, it is not theoretically sensible to use an estimate of error variance for Z_i (nor, in most cases, a linear transformation of it) as an estimate of $\sigma^2(E_i)$. This is a non-trivial matter. The items chosen from Z_i for inclusion in X_i are presumably systematically different in some content-relevant sense from the rest of the items in Z_i. If that were not true, then there would be no particular reason to consider using X_i. That is, forming a composite, X_i by selecting subsets of items from the Z_i implicitly assumes that there are at least two fixed strata for each Z_i. This means that:

- X_i and the remaining items in Z_i are different in some content or construct-relevant sense, and
- X_i and X_j are different in some content or construct-relevant sense.

The phrase “content or construct-relevant” is a bit fuzzy. To be more theoretically correct, we could say that the true scores for X_i and Z_i are not assumed to be linearly related, and the true scores for X_i and X_j are not assumed to be linearly related.

If we assume that the items in X_i satisfy the assumption of essential tau-equivalence, then

$$\sigma^2(E_i) = \sigma^2(X_i)(1 - \rho_{\alpha}^2),$$

(19)

can be used, where ρ_{α}^2 is coefficient α associated with X_i. This estimate of $\sigma^2(E_i)$ can be used in Equations 11 and 12 to obtain estimates of $\sigma(T_X, Z)$ and $\sigma^2(T_X)$, respectively.
Sometimes it is unreasonable to assume essential tau-equivalence for one (or more) of the component parts of \(X\). In such cases, a reliability coefficient based on congeneric assumptions might be considered instead of coefficient \(\alpha\) (see Feldt & Brennan, 1989, or Haertel, 2006).

Alternatively, generalizability theory might be considered (see Brennan, 1998, 2001). Suppose, for example, that: (a) \(Z_i\) consists of five passages, and each item in \(Z_i\) is associated with a single passage; (b) the first two passages test content area \(c_1\), the last three passages test content area \(c_2\), and there are (possibly) different numbers of items per passage; and (c) \(X_i\) consists of the \(c_1\) passages. If so, letting \(p\) stand for persons, \(m\) stand for items, and \(h\) stand for passages, the multivariate G study design for \(Z_i\) is \(p - (m \times h)\), the D study design is \(p \times (m^0 : h^0)\), and the computer program mgGENOVA (Brennan, 2001b) can be used to estimate \(\sigma^2(E_i)\), which is the error variance associated with the \(c_1\) passages (see, also, Brennan, 2001a, pp 231–233, 283–284).

3.2 Scale Scores

Assume we have raw-to-scale-score transformations for each of the \(Z_i\) and for \(X\), but we do not have scale-score transformations for the \(X_i\). In a large-scale testing program, having scale score transformations for each of the \(X_i\) would be extraordinarily unusual, since they would not likely be reported scores.

Let \(\bar{Z}_i\) and \(\bar{X}\) designate the scale-score versions of \(Z_i\) and \(X\). The scale score variance \(\sigma^2(\bar{X})\) is easily obtained by direct use of scale scores for each examinee. Similarly, the scale score variances \(\sigma^2(\bar{Z}_i)\) are easily obtained and can be used in Equation 13 to obtain \(\sigma^2(\bar{Z})\). The scale-score relative utility index, \(\bar{U}_r\), has the same form as \(U_r\), namely,

\[
\bar{U}_r = \frac{\bar{U}}{\rho^2_{\bar{X}}} = \frac{\rho^2(T_{\bar{X}}; \bar{Z})}{\sigma^2(\bar{Z})} = \left[\frac{\sigma^2(\bar{X})}{\sigma^2(\bar{Z})} \right] \frac{\sigma(T_{\bar{X}}; \bar{Z})}{\sigma^2(T_{\bar{X}})}. \tag{20}
\]

3.2.1 Variance of \(T_{\bar{X}}\)

The scale-score analogue of \(\sigma^2(T_X)\) is

\[
\sigma^2(T_{\bar{X}}) = \sigma^2(\bar{X}) - \sigma^2(\bar{E}), \tag{21}
\]

where \(\sigma^2(\bar{E})\) is the error variance associated with the scale-score transformation of \(X\). This error variance can be estimated using many procedures, some of which are discussed in Subsection 3.3.

\[4\] mgGENOVA and Brennan (2001a) usually treat raw scores in the proportion-correct, not number-correct metric, which influences the equations for variance components, covariance components, and error variances. This metric difference can be circumvented by using \(\sigma^2(E_i) = \sigma^2(X_i)(1 - E_i \rho^2)\), where \(\sigma^2(X_i)\) is expressed in the intended metric, and \(E_i \rho^2\) is the generalizability coefficient for \(X_i\) — i.e., the set of two passages associated with \(c_1\).
3.2.2 Covariance of \(T_X \) and \(Z \)

Because the \(X_i \) are not likely to be available, it is awkward (although possible) to make direct use of the scale score analogue of \(\sigma(T_X, Z) \) in Equation 11 to obtain \(\sigma(T_{\bar{X}}, \bar{Z}) \). Often, a more useful approach is to use the following derivation:

\[
\sigma(T_{\bar{X}}, \bar{Z}) = \sigma \left[\left(\bar{X} - \sum_{i=1}^{k} v_i \bar{E}_i \right), \sum_{i=1}^{k} w_i \bar{Z}_i \right]
\]

\[
= \sum_{i=1}^{k} w_i \sigma(\bar{X}, \bar{Z}_i) - \sigma \left[\left(\sum_{i=1}^{k} v_i \bar{E}_i \right), \left(\sum_{i=1}^{k} w_i \bar{Z}_i \right) \right]
\]

\[
= \sum_{i=1}^{k} w_i \sigma(\bar{X}, \bar{Z}_i) - \sum_{i=1}^{k} v_i w_i \sigma(\bar{E}_i, \bar{Z}_i) \quad (22)
\]

\[
\sigma(T_{\bar{X}}, \bar{Z}) = \sum_{i=1}^{k} w_i \sigma(\bar{X}, \bar{Z}_i) - \sum_{i=1}^{k} v_i w_i \sigma^2(\bar{E}_i) \quad (23)
\]

Equation 23 follows from Equation 22 by the same logic discussed in conjunction with the derivation of Equation 10.

If \(w_i = v_i = 1 \) for \(i = 1, 2, \ldots, k \), then the summation term in Equation 23 is \(\sigma^2(\bar{E}) \), which can be estimated using procedures such as those discussed in Subsection 3.3. Otherwise, however, there is no obvious way to estimate the individual \(\sigma^2(\bar{E}_i) \) terms, since it is not likely that there will be a raw-to-scale-score conversion for the \(X_i \). There is, however, a relatively simple ad hoc procedure discussed next (see also Section 5.3).

Suppose we assume that error variances for raw and scale scores associated with \(X_i \) and \(\bar{X}_i \), respectively, are proportional in the sense that

\[
\frac{\sigma^2(\bar{E}_i)}{\sigma^2(\bar{E})} = \frac{\sigma^2(E_i)}{\sigma^2(E)}. \quad (24)
\]

Then,

\[
\sigma^2(\bar{E}_i) = \frac{\sigma^2(\bar{E})}{\sigma^2(E)} \sigma^2(E_i) \quad (25)
\]

It follows from Equation 23 that

\[
\sigma(T_{\bar{X}}, \bar{Z}) = \sum_{i=1}^{k} w_i \sigma(\bar{X}, \bar{Z}_i) - \frac{\sigma^2(\bar{E})}{\sigma^2(E)} \sum_{i=1}^{k} w_i v_i \sigma^2(E_i), \quad (26)
\]

where each of the terms is estimable in a fairly direct way, except perhaps for \(\sigma^2(\bar{E}) \), which is discussed next.

3.3 Estimating \(\sigma^2(\bar{E}) \)

Given the theory outlined above, the only error variance for scale scores that is required is \(\sigma^2(\bar{E}) \) in Equations 21 and 26. This is the error variance for the scale-score transformation of \(X \).
3.3.1 Linear Transformations
Suppose \(\bar{X} = a + bX \), which means that \(\bar{X} \) is a linear transformation of \(X \). In this case, \(\sigma^2(\bar{E}) = b^2 \sigma^2(E) \). It follows from Equations 21 and 26 that
\[
\sigma^2(T_{\bar{X}}) = \sigma^2(\bar{X}) - b^2 \sigma^2(E)
\]
and
\[
\sigma(T_{\bar{X}}, \bar{Z}) = \sigma(\bar{X}, \bar{Z}) - b^2 \sum_{i=1}^{k} w_i v_i \sigma^2(E_i).
\]

3.3.2 Non-linear Transformations
There are a number of procedures for obtaining \(\sigma^2(\bar{E}) \) for scale scores that are non-linear transformations of raw scores. Most of these procedures are based on obtaining conditional scale-score error variance for persons, and then integrating (or summing) over persons to obtain the overall scale-score error variance. Kolen, Hanson, and Brennan (1992) as well as Lee, Brennan, and Kolen (2000) provide descriptions or summaries of most of these procedures.

Kolen and Brennan (2014, pp. 405–407) discuss a procedure for constructing scale scores that involves a linear transformation of arcsine transformed raw scores. Since the arcsine transformation is non-linear, the resulting raw-to-scale score transformation is also non-linear. In addition, since the arcsine transformed raw scores have approximately equal conditional standard errors of measurement, so do the linear-transformed scale scores. The process of obtaining scale scores in this manner involves prespecifying the overall scale-score standard error of measurement, which can be used as \(\sigma(E) \) for these scale scores.

4 Examples
The new SAT© Suite of Assessments consists of substantially revised versions of the SAT©, PSAT© and PSAT8/9© (which, in sense, replaces Readisteps©). These three new assessments were vertically scaled based on results from a large scaling study conducted in late 2014 and early 2015. All assessments include three reported Test scores in Reading (\(R \)), Language (\(L \))\(^5\), and Math (\(M \)), as well as the two Cross-Test scores in History (\(H \)) and Science (\(S \)). Importantly, \(H \) and \(S \) are not scores for distinct separately-timed tests. Rather, the items that contribute to \(H \) and \(S \) are subsets of items in Reading, Language, and Math. The \(H \) and \(S \) scores for the SAT© and the PSAT© are the focus of the discussion in this section. Note that in this section, italicized letters usually refer to scores on tests, but sometimes italicized letters refer to the tests themselves.

\(^5\)This is often called the Writing and Language Test, or the Evidence-based Writing and Language Test. Here it is called the Language (\(L \)) Test merely to simplify terminology and notation in formulas.
4.1 SAT® Background

For the SAT®, the numbers of items that contribute to the three Test scores are: 52 (R), 44 (L), and 58 (M); the number of items that contribute to the two Cross-Test scores are 35 (H) and 35 (S). All items are multiple-choice, they are dichotomously scored, and the raw scores are number-correct scores (no correction for guessing). The following is a mapping of the notation for this example onto the notation used elsewhere in this paper: $Z_1 = R$, $Z_2 = L$, $Z_3 = M$, and $X = H$ or $X = S$.

For the SAT® form considered here, H consists of the sum of scores for 21 items from Reading, six items from Language, and eight items from Math. A similar statement holds for S, but the items are different from those for H.6 Clearly H and S can be viewed as composites, as defined in this paper.

Number-correct raw scores on H are the simple sum of the subsets of raw scores from R, L, and M. It follows that $v_1 = v_2 = v_3 = 1$ and $H = X_1 + X_2 + X_3$. Similar statements apply to S.

In considering this example, it is useful to know that the Reading and Language Tests are passage-based, with each item associated with one and only one passage. The items in two history passages in the Reading Test contribute to H, and the items in two science passages in the Reading Test contribute to S.

For the Tests and Cross-Tests, raw scores are not reported to examinees. Rather, the reported scores are scale scores that range from 10 to 40. The raw to scale-score conversions were obtained from the vertical scaling study mentioned above. In that study, an arcsine transformation of raw scores was used that ultimately resulted in scale scores with approximately equal conditional standard errors of measurement, CSEMs (see Kolen & Brennan, 2014, pp. 405–410).

A seemingly obvious question to ask about H is, “Are the observed scale scores for H better estimates of true scores for H than the observed scale scores for R, L, or M?” A corresponding question applies to S. The values of the relative utility indexes that answer these questions are reported in Table 1 based on the statistics in Tables 2 and 3 which were obtained from over 5000 scaling-study examinees in grades 11 and 12.

4.2 Computation of \bar{U}_r for H vs. R in the SAT®

Consider, for example, \bar{U}_r for H when the Z composite is simply R [i.e., $Z = 1(R) + 0(L) + 0(M) = R$]. In Table 1, the reported value is $\bar{U}_r = .917$. Recall from Equation 20 that the four statistics required to estimate \bar{U}_r are $\sigma^2(\bar{X})$, $\sigma^2(\bar{Z})$, $\sigma(T_{\bar{X}}, \bar{Z})$, and $\sigma^2(T_{\bar{X}})$. From Table 2, we obtain

\begin{align*}
\sigma^2(\bar{X}) &= \sigma^2(\bar{H}) = 26.786 \quad \text{and} \\
\sigma^2(\bar{Z}) &= \sigma^2(\bar{R}) = 24.671.
\end{align*}

6For more information on SAT® scores see https://collegereadiness.collegeboard.org/about/scores/structure and https://collegereadiness.collegeboard.org/pdf/scoring-sat-practice-test-1.pdf.
Table 1: \(\bar{U} \) and \(\bar{U}_r \) (compared to \(R, L, \) and \(M \)) for \(H \) and \(S \) in the SAT©

<table>
<thead>
<tr>
<th>(w_i)</th>
<th>(R)</th>
<th>(L)</th>
<th>(M)</th>
<th>History ((H))</th>
<th>(\bar{U})</th>
<th>(\bar{U}_r)</th>
<th>Science ((S))</th>
<th>(\bar{U})</th>
<th>(\bar{U}_r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z = R)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.751</td>
<td>.917</td>
<td>.795</td>
<td>.917</td>
<td>.795</td>
<td>.917</td>
</tr>
<tr>
<td>(Z = L)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.779</td>
<td>.951</td>
<td>.793</td>
<td>.915</td>
<td>.793</td>
<td>.915</td>
</tr>
<tr>
<td>(Z = M)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>.688</td>
<td>.840</td>
<td>.685</td>
<td>.790</td>
<td>.685</td>
<td>.790</td>
</tr>
</tbody>
</table>

Table 2: Scale-Score Variance-Covariance Matrix, \(\sigma(\bar{E}) \), and Reliability (\(\rho^2 \)) for SAT© Tests and Cross-Tests

<table>
<thead>
<tr>
<th></th>
<th>(R)</th>
<th>(L)</th>
<th>(M)</th>
<th>(H)</th>
<th>(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma(\bar{E}))</td>
<td>1.7</td>
<td>1.8</td>
<td>1.5</td>
<td>2.2</td>
<td>1.9</td>
</tr>
<tr>
<td>(\rho^2)</td>
<td>.883</td>
<td>.892</td>
<td>.897</td>
<td>.819</td>
<td>.867</td>
</tr>
</tbody>
</table>

Note. For the five tests, \(\sigma(\bar{E}) \) is the “constant” conditional standard error of measurement that resulted from the scaling study, and \(\rho^2 \) is reliability using the formula \(1 - \sigma^2(\bar{E})/\sigma^2(\bullet) \), where \(\sigma^2(\bullet) \) stands for the scale-score variance for any one of the three tests or two cross-tests (diagonal elements in table).

Both of these statistics can be computed directly from examinees’ reported scale scores.

Using Equation 21 and results reported in Table 2,

\[
\sigma^2(T_{\bar{X}}) = \sigma^2(\bar{H}) - \sigma^2(\bar{E}) = 26.786 - (2.2)^2 = 21.946.
\]

(29)

For this example, \(w_i = 1 \) for a single test, \(R \), and \(w_i = 0 \) for the other two tests. This simplifies Equation 23 for \(\sigma(T_{\bar{X}}, \bar{Z}) \). Specifically,

\[
\sigma(T_{\bar{X}}, \bar{Z}) = \sigma(\bar{X}, \bar{Z}) - \sigma^2(\bar{E_1}),
\]

(30)

where \(\bar{Z} \) is the scale scores for \(R \), \(\bar{X} \) is the scale scores for \(H \), \(\sigma(\bar{X}, \bar{Z}) = 23.228 \) from Table 2, and \(\bar{E_1} \) means the scale score error variance for the Reading items that contribute to \(H \). From Equation 30, it is clear that \(\sigma(T_{\bar{X}}, \bar{Z}) \) gets reduced by the correlated error \(\sigma^2(\bar{E_1}) \) that arises because \(Z \) and \(X \) (\(R \) and \(H \), respectively in this example) share two reading passages and their associated items.

The computation of \(\sigma(T_{\bar{X}}, \bar{Z}) \) is challenging, primarily because we do not have the raw-to-scale score conversion tables for the sets of Reading, Language,
Table 3: Raw-score Statistics and $\sigma^2(\tilde{E}_i)$ for R, L, and M Items in SAT© Cross-Tests

<table>
<thead>
<tr>
<th>Cross-Test</th>
<th>H</th>
<th>Cross-Test</th>
<th>S</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\sigma^2(X_i)$</td>
<td>14.386</td>
<td>2.047</td>
<td>4.263</td>
</tr>
<tr>
<td>ρ_{α}^2</td>
<td>.720</td>
<td>.465</td>
<td>.709</td>
</tr>
<tr>
<td>$\sigma^2(E_i)$</td>
<td>4.033</td>
<td>1.096</td>
<td>1.242</td>
</tr>
<tr>
<td>$\sigma^2(\tilde{E}_i)$</td>
<td>3.064</td>
<td>.832</td>
<td>.944</td>
</tr>
</tbody>
</table>

Note. $\sigma^2(E_i) = \sigma^2(X_i)(1 - \rho_{\alpha}^2)$ with computations performed with six decimal digits. $\sigma^2(\tilde{E}_i)$ was computed using Equation 25 with $\sigma^2(\tilde{E}) = (2.2)^2 = 4.840$ for H and $\sigma^2(\tilde{E}) = (1.9)^2 = 3.610$ for S.

and Math items that are in H. To circumvent this problem, the approach outlined in Section 3.2.2 was used. As discussed above $\sigma^2(\tilde{E}) = (2.2)^2 = 4.840$, and from Table 3, $\sigma^2(E_1) = 4.033$. Since the three parts of H do not share any items or passages, we can assume that error variances for raw scores are uncorrelated. Using results in Table 3, it follows that for number-correct raw scores

$$\sigma^2(E) = \sigma^2(E_1) + \sigma^2(E_2) + \sigma^2(E_3) = 4.033 + 1.096 + 1.242 = 6.371,$$ \hspace{1cm} (31)

where the subscripts 1, 2, and 3 refer to R, L, and M, respectively. Using Equation 25,

$$\sigma^2(\tilde{E}_1) = \left(\frac{4.840}{6.371}\right) 4.033 = 3.064,$$ \hspace{1cm} (32)

and using Equation 30

$$\sigma(T_{X}, \tilde{Z}) = 23.228 - 3.064 = 20.164.$$ \hspace{1cm} (33)

Finally, replacing the results in Equations 27, 28, 29, and 33 in Equation 20, we obtain:

$$\bar{U}_r = \left[\frac{\sigma^2(\tilde{X})}{\sigma^2(Z)}\right] \left[\frac{\sigma(T_{X}, \tilde{Z})}{\sigma^2(T_{X})}\right]^2 = \left[\frac{26.786}{24.671}\right] \left[\frac{20.164}{21.946}\right]^2 = .917. \hspace{1cm} (34)$$

Since $\bar{U}_r < 1$, use of H is favored over use of R—or, more specifically, it is preferable to use observed scale scores for H as estimates of true scale scores for H than to use observed scale scores for R as estimates of true scale scores for H.

Kim and Brennan (2015) provide R code for performing these computations. The required input is a subset of the statistics in Tables 2 and 3.

7Raw-score error variances for the X_i were obtained using coefficient α. Other procedures based on G theory were examined, as well, but the differences in results were trivial.
Table 4: \(\bar{U} \) and \(\bar{U}_r \) for \(H \) and \(S \) in the PSAT©

<table>
<thead>
<tr>
<th></th>
<th>(R)</th>
<th>(L)</th>
<th>(M)</th>
<th>History ((H))</th>
<th>Science ((S))</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Z = R)</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>.741</td>
<td>.891 (\bar{U})</td>
</tr>
<tr>
<td>(Z = L)</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>.758</td>
<td>.911</td>
</tr>
<tr>
<td>(Z = M)</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>.578</td>
<td>.695</td>
</tr>
</tbody>
</table>

4.3 PSAT©

The structure of the PSAT© is essentially the same as that for the SAT© discussed at the beginning of Section 4.1. The primary differences are: (a) the PSAT© is somewhat easier than the SAT©; (b) the PSAT© Tests are shorter — the three Test lengths are 47, 44, and 48 for \(R \), \(L \), and \(M \), respectively; the two Cross-Test lengths are 32 for both \(H \) and \(S \); and (c) the scale scores for each PSAT© Test and Cross-Test range from 8 to 38 rather than 10 to 40. These differences between the SAT© and PSAT© are consistent with the fact that the PSAT© is vertically scaled to the SAT©. Note that both \(H \) and \(S \) consist of 19, 6, and 7 items from \(R \), \(L \), and \(M \), respectively, with \(H \) and \(S \) each including number-right scores for two passages from \(R \).

Table 4 provides the relative utility indices for \(H \) and \(S \) compared to \(R \), \(L \), and \(M \). As is the case for the SAT©, \(\bar{U}_r < 1 \) suggesting that both \(H \) and \(S \) are better estimates of their respective true scores than are \(R \), \(L \), and \(M \), even though \(R \), \(L \), and \(M \) are longer than \(H \) and \(S \). It comparing Tables 4 and 1, it is evident that \(H \) and \(S \) are somewhat more highly favored for the PSAT© than for the SAT©.

5 Concluding Comments

In this section, the discussion is usually couched in terms of the raw-score variables \(Z_i \), \(X_i \), and \(X_i \) — as well as \(T_X \). Distinctions are drawn between raw-score and scale-score variables only when doing so seems necessary to make a particular point (especially in Section 5.3).

The theory presented in this paper is very general, although computations are relatively simple. They require only \(\sigma^2(X) \), \(\sigma^2(Z) \), \(\sigma(T_X, Z) \), and \(\sigma^2(T_X) \) — or, at a finer level of detail, the \(w_i \) weights, the \(v_i \) weights, the variance-covariance matrix for the \(Z_i \), the variance-covariance matrix for the \(X_i \), and the \(\sigma^2(E_i) \). For scale scores, the \(\sigma^2(E_i) \) are required, also.

There are virtually no constraints on how \(Z_i \), \(X_i \), \(w_i \), and \(v_i \) are defined, with two primary exceptions: (a) the items in \(X_i \) must come from \(Z_i \); and (b) the \(w_i \) and \(v_i \) cannot be negative. Neither error variances nor reliabilities for the \(Z_i \) (or the \(Z \) composite) are required. Also, numbers of items contributing to variables are not required. The only required indicators of uncertainty are the
\(\sigma^2(E_i)\) — and the \(\sigma^2(\tilde{E}_i)\), if scale scores are considered. The theory, then, is very flexible, but flexibility comes with a price — namely, some degree of complexity because of: (a) correlated error that arises from the overlapping items in \(Z_i\) and \(X_i\); and (b) the need to be careful about definitions and transformations of variables.

5.1 Definitions of \(Z_i\), \(X_i\), \(w_i\), and \(v_i\)

Although there are few theoretical constraints on the \(Z_i\), \(X_i\), \(w_i\), and \(v_i\), there are conceptual differences. For example, the \(Z_i\) are associated with actual tests in a battery, whereas the \(X_i\) are sets of items from the \(Z_i\) that combine (via the \(v_i\) weights) to give \(X\) scores. Also, there may be various different sets of \(w_i\) weights used to define different \(Z\) composites, but almost certainly there will be only one set of \(v_i\), since there is typically only one \(X\)-type score. Both the \(w_i\) and \(v_i\) weights are viewed here as nominal weights specified by an investigator based on substantive considerations. Different investigators might legitimately specify different sets of weights based on different definitions/criteria for \(Z\) and/or \(X\).

In this subsection, the \(Z_i\) and \(X_i\) are usually considered to be number-correct scores for tests of dichotomously-scored items (or number-of-points scores for polytomously-scored items). Sometimes, however, \(Z_i\) and \(X_i\) are specified as proportion-correct scores (or proportion-of-points scores). The scale-score analogues of \(Z_i\) and \(X_i\) are not considered explicitly in this section, although the basic principles discussed here apply to scale scores, as well.

Probably the most likely scenario for raw scores is: (i) \(Z_i\) and \(X_i\) are number-correct scores; (ii) the \(v_i\) are all 1; and (iii) the \(w_i\) are permitted to take on different values depending upon various criteria that may be of interest. In general, \(U_r\) will vary if different values are used for the individual \(w_i\) and/or \(v_i\).

5.1.1 The \(w_i\) Weights

Suppose there are three full-length tests — \(Z_1\), \(Z_2\), and \(Z_3\). For convenience, let us assume that \(\sum w_i = 1\).

Table 5 provides six possible sets of weights for the \(w_i\). For sets a, b, and c, \(w_i = 1\) for one \(i\) and \(w_i = 0\) for the other two \(i\). These are the weights used in the examples in Section 4. They are the most likely choices in many practical situations, but other sets of \(w_i\) weights are certainly possible. (Note that \(w_i = 0\) has nothing to do with whether or not \(Z_i\) contributes items to \(X\), because contributions to \(X\) are reflected by the \(v_i\), not the \(w_i\).)

For set d, the \(Z_i\) are weighted equally. For set e, \(Z_1\) and \(Z_2\) are each weighted half as much as \(Z_3\). Set f gives equal weight to \(Z_1\) and \(Z_2\) and no weight to \(Z_3\).

There is no single linear transformation of one set of \(w_i\) weights in Table 5 that gives any one of the other sets of \(w_i\) weights. Therefore, except in trivial circumstances the relative utility indexes for these sets of weights will be different.

Assuming that \(\sum w_i = 1\) is convenient for illustrative purposes, and for most practical purposes, but not theoretically necessary. Suppose, for example, that
Table 5: Illustrative Sets of \(w \) weights for a \(Z \) Composite of \(k = 3 \) Tests

<table>
<thead>
<tr>
<th>Set</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>(w_3)</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>all weight on test 1</td>
</tr>
<tr>
<td>b</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>all weight on test 2</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>all weight on test 3</td>
</tr>
<tr>
<td>d</td>
<td>.33</td>
<td>.33</td>
<td>.33</td>
<td>equal weights for all tests</td>
</tr>
<tr>
<td>e</td>
<td>.25</td>
<td>.25</td>
<td>.50</td>
<td>test 3 weighted twice as much as tests 1 and 2</td>
</tr>
<tr>
<td>f</td>
<td>.50</td>
<td>.50</td>
<td>0</td>
<td>test 3 unweighted; tests 1 and 2 equally weighted</td>
</tr>
</tbody>
</table>

the set of weights is \(w_1 = w_2 = 10 \) and \(w_3 = 0 \). This is analogous to set \(f \) in Table 5. Indeed the relative utility indexes for two sets of \(w_i \) weights will be equal (assuming the \(v_i \) are unchanged), because the two sets of \(w_i \) weights are linear transformations of each other. However, the scale of \(Z \) will be much different for the two sets of weights. Consequently, care must be taken in interpreting results.

In the above discussion, the \(w_i \) weights have been discussed as if they were nominal weights determined a priori, presumably based on some context of contextual considerations. That is probably the most likely scenario. In theory, however, the \(w_i \) weights could be determined based on some statistical criterion or methodology. The most obvious possibility would be regression weights of some kind. The resulting scale for \(Z \), however, is not likely to correspond with a reported score, which undermines the usefulness of such weights for users with access to reported scores, only.

5.1.2 The \(v_i \) Weights

Prespecifying the \(v_i \) requires careful thought, because they substantially influence the interpretation and psychometric properties of \(X \). For example, assume \(k = 3 \) and suppose \(X_1, X_2, \) and \(X_3 \) contain 25, 20, and 10 dichotomously-scored items from \(Z_1, Z_2, \) and \(Z_3, \) respectively. Then, if the \(X_i \) are total scores and \(X \) is intended to be a total score ranging from 0 to 55, it follows that the three \(v_i \) should be set to 1. Of course, other \(v_i \) weights are possible. For example the weights could be \(v_1 = v_2 = 1 \) and \(v_3 = 2 \); if so, total scores on \(X \) would range from 0 to 65.

Continuing with the example in the previous paragraph, suppose the \(X_i \) are specified in terms of proportion-correct scores between 0 and 1. Then setting the three \(v_i \) to 1 will cause \(X \) to have a range of 0 to 3, which is not necessarily wrong per se, but it is not likely to be the investigator’s intent. It is more likely that the investigator wants scores on \(X \) to range from 0 to 1, which can be achieved in numerous ways, including: (i) setting \(v_1 = v_2 = v_3 = 1/3 \); or (ii) setting \(v_1 = 25/55, v_2 = 20/55, \) and \(v_3 = 10/55 \). These different sets of weights will lead to different values for \(U_r \).

When the \(X_i \) are proportion-correct scores, the \(v_i \) could be defined as

\[
v_1 = 25, \ v_2 = 20, \ \text{and} \ v_3 = 10,
\]
which would transform the proportion-correct \(X_i \) scores such that the \(X \) composite has a range of 0 to 55. This is the same range as for the \(X \) composite obtained using total scores for \(X_i \) with

\[
v_1 = v_2 = v_3 = 1.\]

There is no single linear transformation of the first set of \(v_i \) weights (25, 20, and 10) that gives the second set of \(v_i \) weights (all 1). Still, \(U_r \) will be the same for both sets of \(v_i \) weights provided the \(\alpha^2(E_i) \) are for the intended \(X_i \) metric (i.e., number-correct or proportion-correct scores).

Strictly speaking, \(v_i \) can be set to 0 even when \(Z_{ni} \) contributes items to the test \(X \). Doing so is seldom sensible, however, because test \(X \) will include \(Z_{ni} \)-type items, but the score \(X \) will not include the \(X_i \) score.

In short, there is no right answer to what the nominal \(v_i \) weights should be, and care should be taken in specifying them. In the author’s experience, when the \(v_i \) are nominal weights, it is usually appropriate that they be chosen to obtain the intended range of scores on \(X \) once the \(X_i \) scores are defined.

5.2 Transformations of Component Parts of \(U_r \)

Since the raw-score relative utility index \(U_r \) is defined as the ratio of two squared correlations, \(\rho^2(T_X, Z) \) and \(\rho^2(T_X, X) \) (see Equation 17), \(U_r \) is unaffected by linear transformations of \(Z, X \), and/or \(T_X \). Note that a linear transformation of any composite variable affects its component parts. For example, if \(Z \) is transformed to \(Z' = a + b Z \), then \(Z' = a + b \sum_i w_i Z_i \).

Obviously, if \(Z, X \), and/or \(T_X \) is/are transformed non-linearly, as they often are for scale scores, then it is almost certain that the \(U_r \) will change. Also, as discussed next, if the component parts of \(Z \) and/or \(X \) are linearly transformed, it is not necessarily true that \(U_r \) will be unchanged.

Suppose that \(k = 3 \) and: (a) there are different numbers of items \((n_1, n_2, \) and \(n_3) \) that contribute to the \(Z_i \); (b) there are different numbers of items \((m_1, m_2, \) and \(m_3) \) that contribute to the \(X_i \); and (c) \(m_i < n_i \) for all \(i \). If both the \(Z_i \) and the \(X_i \) are scored number-correct, then there will be some specific value for \(U_r \) that is dependent on the prespecified \(w_i \) and \(v_i \). By contrast, if the \(Z_i \) and/or the \(X_i \) are scored proportion correct, then the \(U_r \) value will be different, except in trivial cases. In short, using different linear transformations for the individual \(Z_i \) and/or \(X_i \) does not necessarily mean that \(Z \) and/or \(X \) are linearly transformed, because \(Z \) and \(X \) depend upon the prespecified \(w_i \) and \(v_i \), respectively.

5.3 Proportionality Assumption for Scale-score Error Variances

For scale scores, the \(\sigma^2(E_i) \) are required. Obtaining them is not always straightforward, however, since raw-to-scale score transformations for the \(X_i \) are seldom available. This matter is addressed here through adopting the proportionality
assumption in Equation 24, which leads to the formula for $\sigma^2(\tilde{E}_i)$ in Equation 25.

Equation 25 holds when \tilde{X} is a linear transformation of X. Logically, then, this assumption should hold approximately for non-linear transformations that do not depart too much from linearity. Furthermore, if most of the non-linearity is attributable to the relationship between true scores T_X and $T_{\tilde{X}}$, the assumption seems reasonably plausible.

If doubts persist about the appropriateness of the proportionality assumption, relative utility might be estimated using different plausible choices for $\sigma^2(\tilde{E}_i)$—subject, of course, to the constraint that $\sum v_i^2\sigma^2(\tilde{E}_i) = \sigma^2(\tilde{E})$. If the various choices give similar values for relative utility, concerns about the proportionality assumption diminish.

Suppose $w_i = 1$ for one of the Z_i and $w_i = 0$ for the other $k-1$ Z_i. This is the case considered in the computational example in Section 4.2 where $w_1 = 1$, and we examined whether H or R was a better estimate of true scores on H. For this example, one approach to examining the reasonableness of the proportionality assumption is to find the value of $\sigma^2(\tilde{E}_1)$ that gives $\tilde{U}_r = 1$ and compare this value of $\sigma^2(\tilde{E}_1)$ to the proportionality-based $\sigma^2(\bar{E}_1)$.

Replacing Equation 30 in Equation 20 gives

$$\tilde{U}_r = \left[\frac{\sigma^2(\tilde{X})}{\sigma^2(\tilde{Z})} \right] \left[\frac{\sigma(\tilde{X}, \tilde{Z}) - \sigma^2(\tilde{E}_1)}{\sigma^2(\tilde{X})} \right]^{\frac{1}{2}}.$$ \hspace{1cm} (35)

Solving for $\sigma^2(\tilde{E}_1)$ gives

$$\sigma^2(\tilde{E}_1) = \sigma(\tilde{X}, \tilde{Z}) - \sigma^2(\tilde{X}) \left[\frac{\sigma(\tilde{Z})}{\sigma(\tilde{X})} \right] \sqrt{\tilde{U}_r},$$

and if $\tilde{U}_r = 1$, then

$$\sigma^2(\tilde{E}_1) = \sigma(\tilde{X}, \tilde{Z}) - \sigma^2(\tilde{X}) \left[\frac{\sigma(\tilde{Z})}{\sigma(\tilde{X})} \right].$$

For the SAT© computational example in Section 4.2, the value of $\sigma^2(\tilde{E}_1)$ that gives $\tilde{U}_r = 1$ is

$$\sigma^2(\tilde{E}_1) = 23.228 - 21.946 \sqrt{\frac{24.671}{26.786}} = 2.166.$$

Recall that the actual value of $\tilde{U}_r = .917$ resulted from $\sigma^2(\tilde{E}_1) = 3.064$, which is over 40% larger than 2.166. Equation 35 clearly indicates that larger values of $\sigma^2(\tilde{E}_1)$ lead to smaller values of \tilde{U}_r. It follows that the rather large disparity (2.166 vs 3.064) lends credence to the conclusion the H is a better estimate of true scores on H than is R. If the disparity were quite small, an investigator might conclude that there is only weak support for the use of H over R.

16
5.4 Special Case: Decisions About Subscores

Suppose that: (i) \(w_i = 1 \) for all \(k \) values of \(i \); (ii) \(v_i = 1 \) for a single \(i \), say \(i^* \); (iii) \(v_i = 0 \) for the remaining \(k - 1 \) values of \(i \); and (iv) the subset of items that contribute to \(X_{i^*} = X \) is the entire full-length test \(Z_{i^*} \). That is, rather than being a pseudo test, \(X \) is actually one of the tests in the battery. This is the case treated by Haberman (2008) and Brennan (2011) in their consideration of decisions about subscores. As Brennan (2011) shows, the Haberman/Brennan procedures lead to the same decision about whether \(X \) or \(Z \) is preferable as an estimate of \(T_X \). The above special case also leads to the same decision, since \(U_r \) in this paper and the relative utility index in Brennan (2011) always lead to the same decision in this special case.

5.5 Multidimensionality

The theoretical framework in this paper is inherently multidimensional in at least two senses. First, if the \(Z_i \) do not conform to a multidimensional model, it might be argued that there is no psychometric reason for distinguishing among them, and we might as well concatenate all of them rather than pretend they measure different content or constructs. Second, the very fact that we create test \(X \) by selecting specific subsets of items, \(X_i \), from the \(Z_i \), suggests that there is an intended difference between the \(X_i \)-type items in each \(Z_i \) and the non-\(X_i \)-type items in each \(Z_i \). If that is not true for at least some \(X_i \), then the meaningfulness of \(X \) is undermined.

5.6 Caveats

The theoretical framework in this paper supports a decision to report \(X \) if \(U_r < 1 \); otherwise, \(Z \) is supported. The theory, however, does not directly address all validation issues involving the uses and interpretations of \(X \) scores (see, for example, Kane, 2013, and Brennan, 2013). Next, we consider two situations in which using only \(U_r \) to make a decision about reporting \(X \) may be at variance with another legitimate concern.

First, suppose \(U_r > 1 \) implying that reporting \(Z \) is preferred over \(X \). Still, there may be other substantive reasons to prefer \(X \) over \(Z \). One such reason could be that \(Z \) includes too many items that muddle the interpretation of scores for the intended \(X_i \)-type construct. Second, suppose \(U_r < 1 \) implying that reporting \(X \) is preferred over \(Z \). Still, the \(X \) scores could be judged to be too unreliable (or contain too much error variance) for reporting purposes.

6 References

