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Abstract

This study evaluates the relative performance of simultaneous linking and Stocking-Lord’s
scale transformation under two linking scenarios. Simultaneous linking is hypothesized to reduce
linking error by circumventing long linking chains. Our findings indicate that the performance
of these two linking methods is highly context-dependent. Despite trivial differences in overall
performance, simultaneous linking shows superior recovery of item discrimination parameters,
whereas Stocking-Lord’s method is more effective in recovering item difficulty parameters.
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1 Introduction

Testing programs that utilize Item Response Theory (IRT) often encounter the challenge of
locating item parameters from different test forms on a common scale. To address this issue,
IRT linking procedures can be employed to ensure consistent resolution of linear indeterminacy
across the various forms. Of available methods, linking via separate IRT calibrations for each
form is often preferred, as it does not require data from every form to be available at the same
time. This procedure entails the separate estimation of item parameters for each form and then
putting them on the common scale through a linear transformation.

Two most popular approaches for scale transformation are the Haebara method (Haebara,
1980) and the Stocking-Lord method (Stocking & Lord, 1983). These two methods typically
involve two forms, new and old forms, and use characteristic curves to find linear transformation
coefficients, a slope (A) and an intercept (B), which are then used to place item parameters for
one form on the scale of the other form. Scale transformation is commonly conducted from new
form to old form. The Haebara method finds the transformation coefficients that minimize the
sum of the squared differences between item characteristic curves for the common items in the
two forms. On the other hand, the Stocking-Lord method uses test characteristic curves in the
minimization process. Kolen and Brennan (2014) provide further discussion on the differences
between these two methods.

When multiple test forms are linked on a common scale, the process often involves multiple
linkages that accumulates errors over time. Concurrent calibration can link multiple test forms
through a single calibration by combining the new and old forms. In concurrent calibration,
items not taken by other groups are treated as missing or not reached (Lord, 1980). However,
concurrent calibration requires that all datasets be available at the time of calibration, and the
calibration can be a time-consuming process.

Concurrent calibration can potentially minimize “linking error”, as it requires only one model
specification to estimate all parameters (Briggs & Weeks, 2009). However, concurrent calibra-
tion may introduce bias when data are multidimensional. In contrast, separate calibration is less
affected by violations of unidimensionality (Béguin & Hanson, 2001). Similar to separate calibra-
tion, where multiple sets of common item parameter estimates are obtained over time, concurrent
calibration also results in a new set of parameter estimates if one of the forms used has already
been calibrated. This scenario presents a challenging decision-making process regarding whether
to replace or retain the existing parameter estimates, regardless of which method is used (Lee &
Lee, 2018).

1.1 Haberman’s Simultaneous Linking

Haberman (2009) introduced a regression-based linking method that is considered a generaliza-
tion of the log-mean/mean method (Mislevy & Bock, 1990). This method is commonly referred
to as simultaneous linking, and as the name implies, it has the capability to link multiple forms
simultaneously. Bypassing the need to specify a sequence of linking steps, it potentially reduces
the risk of cumulative error and therefore may be more robust to scale drift (Haberman, 2010).

Simultaneous linking involves linking multiple test forms together by sharing common items,
although not necessarily the same common items across all administrations. Item parameter
estimates obtained through separate calibration must be available at the time of simultaneous
linking. The process involves an iterative procedure, which makes the computational difficulty
of simultaneous linking more manageable.

Haberman (2009) presented a description of the two parameter-logistic (2-PL) model for
simultaneous linking. The scale transformation coefficients are determined through a two-step
procedure. Suppose that there are T administrations and t represents the tth administration
such that t = 1, . . . , T . In the first step, the slope (At) is found by minimizing the following
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equation:
T∑

t=1

∑
j∈Jt

[log âjt − log Ât − log âj ]
2, (1)

where âj represents the estimated item discrimination parameter for item j on the base scale,
and âjt represents the estimated item discrimination parameter for item j in administration t.

In the second step, the intercept (Bt) is found using the previously determined slope At by
minimizing the following equation:

T∑
t=1

∑
j∈Jt

[b̂jtÂt + B̂t − b̂j ]
2, (2)

where b̂j represents the estimated item difficulty parameter for item j on the base scale, and b̂jt
represents the estimated item difficulty parameter for item j in administration t.

After obtaining the scale transformation coefficients, the new-form parameter estimates can
be placed on the base scale using the following equations:

â′jt = Atâj (3)

b̂′jt = (b̂j −Bt)/At (4)

1.2 Stocking-Lord Scale Transformation

Stocking and Lord (1983) criticized traditional moment methods, such as mean/mean and
mean/sigma, for not incorporating all item parameter estimates simultaneously. For instance,
the mean/sigma method calculates scale transformation coefficients using only item difficulty es-
timates. These coefficients are then used to transform item discrimination estimates and abilities.
This process can be problematic as two significantly different item difficulty estimates, in con-
junction with other item and person estimates, might yield very similar item characteristic curves
(Kolen & Brennan, 2014). In contrast, the Stocking-Lord method estimates transformation co-
efficients using test characteristic curves. By using all item parameter estimates simultaneously,
this method generally produces more accurate results than moment methods (Hanson & Béguin,
2002; Kolen & Brennan, 2014).

The Stocking-Lord method and Haebara method are both characteristic curve methods, with
minor differences. The core principle behind these methods is that each item calibration will
produce an estimated item characteristic curve. Assuming no error, a linear transformation
should make the curves from two different scales align (Stocking & Lord, 1983). In other words,
the probability of an examinee answering an item correctly should remain constant, regardless
of the scale used. Characteristic curve methods aim to minimize the difference between the item
characteristic curves to find the optimal scale transformation coefficients (Kolen & Brennan,
2014).

According to the Stocking-Lord method, in a 2-PL IRT model, the square difference of sums
over items, for a given θi, is expressed in the following equation:

SLdiff(θi) =

∑
j:V

pij(θJi; âJj , b̂Jj)−
∑
j:V

pij(θJi;
âIj
A

,Ab̂Ij +B)

2

, (5)

Here, I and J represent old and new scales, and V is the number of common items. A and
B represent the slope and intercept of scale transformation. âJj and b̂Jj represent the item

discrimination and difficulty estimates for item j on scale J , while âIj and b̂Ij represent the item
discrimination and difficulty estimates for item j on scale I.
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SLdiff is then cumulated over all examinees. A combination of A and B can be found to
minimize the given equation:

SLcrit =
∑
i

SLdiff(θi), (6)

Details on computation can be found in the original paper Stocking and Lord (1983).

1.3 Motivation and Research Objectives

The Stocking-Lord (SL) method and simultaneous linking (SM) share similarities. Both require
the estimates for each test form to be linked through separate calibration, and both involve
an iterative approach in the minimization process. However, unlike SL, SM is considered a
generalized log-mean/mean method which faces the same criticism for not incorporating all
parameter estimates concurrently. Specifically, SM uses the item discrimination estimates to
find the scale transformation slope and uses this slope to find the intercept. On the other hand,
the SL transformation was originally designed for two test forms, whereas SM can link multiple
forms simultaneously to reduce the error accumulation resulting from a long linking chain. The
comparative performances of these two methods are yet to be investigated.

This study endeavors to enhance the current understanding of how simultaneous linking
performs under diverse scenarios. Furthermore, this study underscores error accumulation across
administrations and its effect on item parameter recovery. To address these research objectives,
a simulation study was conducted. Specifically, the study aims to address two research questions.
First, how does SM compare to SL method in terms of their performance under different IRT
models, linking designs, and ability distributions? Second, does the repeated use of the same
items introduce more bias in the item parameter estimates?

1.4 Previous Studies

Previous research has extensively compared performances of various linking methods including
separate, concurrent, and fixed calibration methods. Kim and Cohen (1998) found that separate
calibration was preferred over concurrent calibration when the number of common items was
small, whereas the two methods performed similarly when the number of common items was large.
Lee and Ban (2009) compared various IRT linking procedures in a random groups design and
found that separate calibration, in general, outperformed concurrent calibration. Lee and Ban
(2009) also found that, among separate calibration procedures, the Haebara method produced
lower linking error than the Stocking-Lord method, whereas concurrent calibration outperformed
separate calibration when all the samples were from the same population following a standard
normal distribution. However, no scaling might be a better alternative in this scenario.

Kang and Petersen (2012) emphasized the significance of a proper implementation of fixed
calibration, a procedure that involves fixing common item parameters at the values obtained
from the previous calibration, and then freely estimating parameters of unique items in the
new form. Kang and Petersen found that when fixed calibration was correctly implemented
via using multiple EM cycles and updating the prior ability distribution multiple times during
calibration, the results were comparable to those for the separate and concurrent calibration
methods. However, an incorrect implementation of fixed calibration may introduce severe bias
to the results.

Previous research has provided valuable insights into the performance of different IRT linking
methods. However, there is a lack of understanding regarding the performance of simultaneous
linking in comparison to these methods. Among the limited studies that have investigated the
performance of simultaneous linking, Robitzsch (2020a) highlighted the similarity between the
simultaneous linking and alignment methods. Proposed by Muthén and Asparouhov (2014),
the alignment method estimates group-specific factor means and variances without requiring
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full measurement invariance, allowing for multiple group comparisons under confirmatory fac-
tor analysis (CFA) and IRT models. As linking functions, the underlying principle of both
simultaneous and alignment methods is to minimize the deviation between group-specific item
parameters. Based on the study, Robitzsch (2020a) concluded that the two methods performed
similarly in estimating group means, with robust simultaneous linking having a slight edge over
the alignment method. Unfortunately, this study did not examine recovery of item parameters.

Simultaneous linking has demonstrated promising results when compared to separate calibra-
tion in conjunction with Stocking-Lord transformation. Lu and Antal (2022) acknowledged the
convenience and efficiency of simultaneous linking, in addition to its advantages in protecting
against scale drift. Specifically, simultaneous linking outperformed the Stocking-Lord procedure
when items were administered more than three times (preferably more than five times) and in
the presence of nonsystematic parameter drift. Furthermore, simultaneous linking demonstrated
maximum advantages when forms were administered in a chained design. Considering the sub-
stantial influence of data collection procedures on linking outcomes, the present study aims to
compare effectiveness of the simultaneous linking and Stocking-Lord methods under different
data collection designs.

2 Method

2.1 Study Factors and Conditions

Data simulation and analyses were conducted in R (R Core Team, 2023). The study considered
the following factors: (1) IRT models used to generate and calibrate data, either 1-PL or 2-PL;
(2) examinees’ ability distributions; (3) the linking design, either chained or 5-replication; and (4)
the percentage of common items, either 40% for the chained design or 60% for the 5-replication
design. The study considered a total of 15 administrations (T = 1, . . . , 15). Throughout the
study, sample size and test length were fixed to 1,500 and 50 items, respectively, for each admin-
istration. These conditions were kept fixed based on the hypothesis that altering them would
not significantly impact the overall comparative patterns between the two linking methods. For
examinees’ ability distributions, the study considered the following conditions: (a) N(0,1) for all
15 administrations, (b) N(µ,1) with µ = 0 to .7 with increments of .05 across 15 administrations,
and (c) N(µ,1) with µ = 0 to -.7 with increments of -.05 across 15 administrations. For each
crossed study condition, we generated 1,000 data sets (R = 1,000).

To enable the comparison of common and unique items, parallel test forms were created to be
as similar as possible to eliminate confounding effects due to form differences. Item blocks, each
with 10 items, were constructed so that they had similar means and standard deviations of item
discrimination and item difficulty parameters. The total number of blocks required depended on
the linking design.

Figure 1 presents the chained design that consists of 47 blocks with 40% common items
between two adjacent administrations. The year 1 population associated with the N(0,1) ability
distribution serves as the base scale. When SL is used for scale transformation, a chain is formed
such that item parameter estimates for later administrations go through multiple links to be
linked to the scale of year 1. By contrast, SM requires only one run. For instance, to link year
15 to year 1 using the SL method, a sequential linking process occurs where year 15 is linked to
year 14, which in turn is linked to year 13, and so forth, until year 2 is linked to year 1.

Figure 2 presents a linking design where each of the first seven blocks is administered five
times. This design is, thus, referred to as the 5-replication design, hereafter. In order to assess
the accuracy of item parameter recovery in the context of repeated use of items, this particular
design comprises a total of 33 blocks, corresponding to 15 administrations. While our primary
attention is directed towards the initial seven blocks, errors for the remaining blocks are also
provided for a comprehensive evaluation. A total of 33 blocks are required to secure enough
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items that are utilized five times across 15 administrations while introducing two new blocks for
each administration.

When SL transformation is used for the 5-replication design, multiple linking solutions can
be considered. For example, in the case of linking year 4 to year 1, two different approaches can
be taken. The first approach uses block 1 to link year 4 directly to year 1. The second approach
involves a two-step linking process: step 1) link year 4 to year 2 using blocks 1 and 7, and step 2)
link year 2 to year 1 using blocks 1, 3, and 5. For each year/administration, among all possible
approaches, the approach that required the smallest number of linking steps (i.e., the shortest
link) was consistently selected as the preferred linkage.

The 5-replication design has 60% common items between two adjacent administrations; how-
ever, the total percentage of common items involved in scale linking differed depending on the
target year, ranging from 20% to 60%. For example, to link year 15 back to year 1, block 4 was
utilized as the common block, corresponding to having 20% common items. On the other hand,
linking year 2 to year 1 involved blocks 1, 3, and 5 which correspond to having 60% common
items. It is noteworthy that errors in the 5-replication design are not expected to accumulate, as
it has only one linkage regardless of the target year. In contrast, in the chained design, errors are
expected to accumulate due to multiple linkages. Errors from 60% common items are anticipated
to exhibit a similar pattern to those in 40%, albeit of a smaller magnitude. Only 40% common
items for the chained design or 60% common items for the 5-replication design were considered,
as the percentage (whether 40% or 60%) is not expected to change the comparative performances
of the two linking methods.

2.2 Data and Calibration

In this study, realistic item parameters were obtained by calibrating a real dataset using the
2-PL model. These parameters were then used to construct parallel blocks and simulate data.
Both calibration and data generation were conducted using the irtoys package (Partchev, Maris,
& Hattori, 2022). The scaling constant was set to 1 for all IRT models. Separate calibration
was performed, and different administrations were linked through common items using the plink
package (Weeks, 2010). Simultaneous linking, on the other hand, was conducted using the sirt
package (Robitzsch, 2022).

For the 1-PL condition, the same dataset was calibrated using the 1-PL model, with item
discrimination parameters fixed at 0.57, which was one realistic value of the base scale. Parallel
blocks were then constructed using the acquired item difficulty parameters. Subsequently, for
each of the study conditions, responses for the 15 administrations were simulated using the
item parameters associated with blocks, and the simulated data were calibrated using the 1-PL
model. For each administration, item discrimination parameters were also estimated under the
restriction that they were the same for all items administered at the same time. However, the
focus of this condition was solely on the recovery of item difficulty parameters. The linking
procedures were identical to those of the 2-PL condition. The means and standard deviations of
item parameters for each condition are summarized in Table 1.

3 Evaluation Criteria

3.1 Evaluation Approaches

The study employed two evaluation approaches to compare results between the two linking
methods. The first approach involved organizing the results by block. The approach evaluated
final item parameter estimates for each block upon the end of year 15. The second approach
involved organizing the results by year. This approach facilitates the understanding of result
patterns over time including the accumulation of errors.
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It is important to mention that the SM method yields a single set of estimates, whereas the
SL method produces a set of estimates for each time an item is used in the linking process. This
means that at the end of linking all administrations to the base scale of year 1, each common
item is associated with multiple sets of item parameter estimates in the SL method. To facilitate
a fair comparison between the two methods, the item parameter estimates produced by SL were
averaged and used for the final evaluation. For instance, based on chained design (Figure 1),
when year 2 was linked to year 1, there were two sets of item parameter estimates for blocks 4
and 5: the first set consists of item parameter estimates from year 1 and the second set consists
of item parameter estimates from year 2 that are scale-transformed to the scale of year 1. Thus,
for the final evaluation, the study used the average of the two estimates.

Due to the nature of the chained design, all common blocks were used twice. When results
were organized by block, item parameter estimates produced by SL were averaged across the
two usages for each common block and compared against item parameters. In contrast, the SM
method yields a single set of item parameter estimates for each item; there is no need to average
item parameter estimates across the two usages. Results organized by year present errors in item
parameter estimates for five blocks associated with each administration. For each year, errors
were averaged over five blocks associated with the administration upon its administration.

Similar to the chained design, results for the 5-replication design were organized either by
block or by year. For results organized by block, final item parameter estimates for the SL
method were obtained by averaging the estimates obtained from all administrations. For example,
the final item parameter estimates for block 1 were the averages of estimates from the year 1,
year 2, year 4, year 8, and year 12 administrations. In contrast, with the SM method, linking
was conducted simultaneously across all 15 administrations, yielding a single set of final item
parameter estimates. On the other hand, results organized by year were obtained by using
data accumulated up to a specific targeted year, resulting in 15 sets of results representing 15
administrations for both linking methods (Figure 2).

3.2 Accuracy in Item Parameter Estimates

Item parameter estimates were evaluated in terms of squared bias (SB), variance, mean squared
error (MSE). SB is defined as the squared value of the difference between estimated and true
parameters; and variance captures the deviation from the mean of estimated parameters. MSE
is the sum of SB and variance. SB, variance, and MSE are given by:

SBpi =

∑R
r=1(p̂ri − pi)

2

R
, (7)

Variancepi =

∑R
r=1(p̂ri − ¯̂pi)

2

R
, (8)

MSEpi = SBpi +Variancepi, (9)

where p refers to item parameters, either discrimination or difficulty; pi and p̂ri refer to item
parameter and parameter estimate for item i from the rth replication, respectively; and ¯̂pi refers
to the average of R estimates for item i.

3.3 Recovery of Test Characteristic Curves

Furthermore, test characteristic curves (TCC) based on item parameter estimates were evaluated
in a similar manner. Overall SB, variance, and MSE of TCC estimates are given by:

SBTCC =

Q∑
q=1

SBTCC(θq)× w(θq), (10)
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VarianceTCC =

Q∑
q=1

VarianceTCC(θq)× w(θq), and (11)

MSETCC =

Q∑
q=1

MSETCC(θq)× w(θq), (12)

where conditional SB, variance, and MSE in TCC can be obtained as follows:

SBTCC(θq) =

(∑R
r=1 T̂CCr(θq)

R
− TCC(θq)

)2

=
(
T̂CC(θq)− TCC(θq)

)2
, (13)

VarianceTCC(θq) =

∑R
r=1(T̂CCr(θq)− T̂CC(θq))

2

R
, and (14)

MSETCC(θq) = SBTCC(θq) + VarianceTCC(θq). (15)

In the above equations, θq(q = 1, . . . , Q) is the qth ability point; the weight associated

with the N(0,1) density function is denoted by w (θq). TCC (θq) and T̂CCr (θq) refer to the TCC
based on item parameters at θq and the TCC based on item parameter estimates from the rth

replication at θq, respectively; and T̂CC (θq) refers to the average of R TCC estimates at θq.

T̂CCr (θq) and T̂CC (θq) are given by:

T̂CCr(θq) =

n∑
i=1

P (Correct Response|θq, âri, b̂ri), (16)

T̂CC(θq) =

∑R
r=1 T̂CCr(θq)

R
, (17)

where n refers to the number of items; and âri and b̂ri refer to the discrimination and difficulty
parameter estimates for item i from the rth replication, respectively. As mentioned earlier, the
number of replications was R = 1, 000. θq is a sequence of numbers representing ability ranging
from -4 to 4 with an increment of .01.

4 Results

Since different conditions for ability distribution did not alter the overall comparative perfor-
mance patten of the two linking methods, this section presents results for only one ability dis-
tribution condition. For the 2-PL model condition, results for the increasing ability condition
are reported, and results for the constant ability condition are presented for the 1-PL model
condition. However, it should be noted that varying conditions of ability distribution did have
an impact on the magnitude of errors.

4.1 2-PL Model

4.1.1 Chained Design (Increasing Ability Condition)

Figure 3 presents SB of item discrimination parameters by block for the increasing ability con-
dition when the 2-PL model was used for calibration under the chained design. The subfigures
were organized by all blocks, common blocks only, and unique blocks only. Note that higher
block numbers are associated with later administrations. Based on Figure 3, SM consistently
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yielded smaller SB than SL, indicating better accuracy in recovering item discrimination param-
eters. The differences between the two linking methods became more evident at later blocks in
comparison to earlier blocks.

Similarly, Figure 4 presents SB for item difficulty parameters by block for the increasing
ability condition. Notably, the overall pattern flipped compared to the previous observations.
For difficulty parameters, SBs for the SL method were smaller than those for the SM method
for all blocks. The difference between the two methods became more pronounced for blocks
administered later; in the case of SL method, these blocks required more chains to link back
to the scale of year 1. However, it is worth noting that the differences in SB between the two
linking methods were extremely small in magnitude.

Figures 5 to 8 display the variance and MSE for item discrimination and difficulty parameter
estimates, respectively, for the increasing ability condition. The SL method yielded slightly
smaller variances and MSEs than the SM method did. However, for all blocks, differences in
variances and MSEs between the SM and SL methods seemed to be very small for both item
parameters.

The next set of results were structured by utilizing all the blocks in their respective years. In
each plot, the horizontal axis represents year; for each year, errors were averaged over five blocks
associated with the administration. To enable a fair comparison of the two linking methods,
15 sets of estimates were obtained using the SM and SL methods. The sets included data from
additional years in the linking procedure, with the first set comprising estimates obtained from
calibration for year 1. The second set included data from years 1 and 2, the third set included
data from years 1, 2, and 3, and so on.

Figures 9 and 10 summarize the results for the increasing ability condition, specifically in
terms of SB, variance, and MSE for item discrimination and item difficulty parameters. The
results suggest that SM may have an advantage in recovering item discrimination parameters but
may struggle with item difficulty parameter recovery in this condition when compared to SL. SM
demonstrated lower SB for item discrimination and higher SB for item difficulty in comparison
to SL. Additionally, SM exhibited higher variance and MSE for both item parameters.

According to the TCC criteria, SL outperformed SM slightly. The TCC results were orga-
nized by block and by year. Based on Figure 11, for the blocks used in later administrations,
SM exhibited larger SB, which was more evident in the unique blocks. However, the pattern
fluctuated for the common blocks. Similarly, when the results were organized by year, Figure 12
showed that SBs for the SM method were larger than those for the SL method for year 6 and
later administrations. Variances and MSEs for SM were also larger than those for SL across all
administrations. As suggested by the increasing pattern of lines in all figures, both the SM and
SL methods exhibited error accumulation over time for the chained design.

4.1.2 5-Replication Design (Increasing Ability Distribution)

Figures 13 and 14 present SB of item discrimination and difficulty parameter estimates organized
by block for the increasing ability distribution. The differences in SB between the two linking
methods seemed extremely small. However, consistent with the chained design, the SM method
tended to produce lower bias in recovering item discrimination parameters, regardless of whether
the block was common or unique. Meanwhile, for both common and unique blocks, SBs in item
difficulty parameter estimates for the SL method were lower than those for the SM method.

Figures 15 to 18 present variance and MSE of item discrimination and difficulty parameter
estimates, respectively, for the increasing ability condition. Based on the figures, regardless of
item parameters, variances and MSEs for all blocks were similar for the SM and SL methods.
However, in contrast to the results for the chained design, variances and MSEs for the SM method
under the 5-replication design were marginally lower than those for the SL method for both item
parameters.
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Figure 19 presents SB, variance, and MSE in item discrimination parameter estimates or-
ganized by year for the increasing ability condition. Compared to the results for the chained
design, Figure 19 does not exhibit evident increasing patterns in errors over time. These results
validate the earlier statement that errors do not accumulate in the 5-replication design because
the design involves only one linkage for both the SM and SL methods. The results suggest that
the SM method performed better than the SL method in terms of SB, variance, and MSE in
item discrimination parameter estimates.

Figure 20 presents SB, variance, and MSE in item difficulty parameter estimates organized
by year for the increasing ability condition. Based on Figure 20, SBs tended to be similar for the
SM and SL methods; SBs for the SM method were slightly higher at year 4, year 12, and year
13, but lower for the remaining administrations than those for the SL method. Conversely, SM
consistently produced lower variance and MSE for all 15 administrations than SL.

Figure 21 presents SB in TCC by block for the increasing ability condition. Based on the
results, the recovery of item difficulty parameters seemed to heavily influence the recovery of
TCC. For all blocks, SB in TCC for SM tended to be slightly larger than those for SL. Note that
SBs in difficulty parameter estimates were also slightly larger for SM than for SL (see Figure
14). When the results were organized by year, Figure 22 shows that SM resulted in lower SB in
TCC for the majority of administrations, with a few exceptions, which is similar to the pattern
in SB of item difficulty parameter estimates as shown in Figure 20. Additionally, at year 4 and
later administrations, SM exhibited lower variance and MSE than SL did.

Figures 23 and 24 present SB of item discrimination and difficulty parameter estimates for
the first seven blocks that were repeatedly administered five times. The horizontal axis denotes
the number of replications, while the vertical axis represents the magnitude of SB, with each
colored line representing a block. The results suggest that both linking methods exhibited similar
performances, with an observable decreasing trend as the blocks were used repeatedly. It should
be noted that the blocks themselves are not comparable since each block was used in different
administrations. Importantly, in the absence of parameter drift, recurring use of the same blocks
over time did not lead to the accumulation of error in parameter estimates. In fact, the more the
same blocks were used, the more accurate the results became. Moreover, although not presented
here, the variance and MSE also decreased as the blocks were repeatedly used for both linking
methods. Overall, these findings suggest that using the same blocks repeatedly is an effective
strategy for improving the accuracy of parameter recovery in linking.

It should also be noted that while the overall trend of the results remains consistent for all
ability distributions, the magnitude of SB differences between two linking methods were more
evident in situations where the ability distributions were constant or decreasing, as opposed to
increasing. Additionally, the use of the SM method resulted in smaller variance and MSE in
most conditions.

4.2 1-PL Model

4.2.1 Chained Design (Constant Ability Distribution)

The linking and evaluation procedures for the 1-PL model are analogous to those for the 2-PL
model. However, for the 1-PL model, we are solely interested in item difficulty parameters.
As previously mentioned, varying ability distribution conditions did not significantly alter the
overall patterns of results. Thus, this section presents results for the constant ability distribution
to highlight differences between the two linking methods using the 1-PL model. All of the results
obtained under the chained design for the 1-PL model are consistent with those for the 2-PL
model.

In Figure 25, SB of item difficulty parameter estimates is organized by block for the constant
ability condition. The results show that, for the majority of blocks (especially block 12 and later
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blocks), the SM method yielded larger SB in comparison to the SL method, regardless of whether
the blocks were common or unique. However, based on Figures 26 and 27, SM exhibited smaller
variance and smaller MSE for all blocks than SL did, although the differences were comparatively
small. When results were organized by year, the SBs produced by both methods were very similar
in magnitude. However, SM demonstrated smaller variance and MSE compared to SL (Figure
28).

Furthermore, the study examined the recovery of TCC by block. Based on Figure 29, SBs
for SM tended to be slightly larger than those for SL. This result is expected, as the SL method
showed slightly better recovery in difficulty parameters compared to the SM method. When
the TCC results were organized by year, Figure 30 shows that the performances of both linking
methods were similar, with SM producing slightly larger SBs and smaller variances and MSEs
than SL.

4.2.2 5-Replication Design (Constant Ability Distribution)

This section compares the performance of the SM and SL methods for the 1-PL model under
the 5-replication design with the constant ability distribution condition. According to Figure
31, neither linking method consistently outperformed the other in terms of SB. In half of the
blocks, SM yielded smaller SBs than SL, while SL produced smaller SBs for the other half. This
pattern was observed for both common and unique blocks. In contrast, based on Figures 32
and 33, variances and MSEs of difficulty parameter estimates were consistent with the previous
observations; namely, the errors for SM tended to be smaller the those for SL for all blocks.

When examining the results organized by year, Figure 34 shows that the SM method yielded
smaller SBs in most years, except for years 4 and 8. Furthermore, the SM method yielded
smaller variances and MSEs compared to the SL method, particularly when the results were
organized by year rather than by block. In addition, the errors seem relatively consistent over
the years without showing an evident increasing pattern. This again suggests that there was no
accumulation of error over time for the 5-replication design.

The results of the TCC criterion were heavily influenced by the recovery of item difficulty
parameters. Figures 35 and 36 present results organized by block and by year, respectively. When
the results were organized by block, the SM method yielded smaller values of SB for half of the
blocks, irrespective of whether they were common or unique. When the results were organized by
year, SBs in TCC for the SM method were smaller for the majority of years, with the exception
of years 4 and 8, than those for the SL method. Moreover, SM consistently exhibited smaller
variances and MSEs for TCC in comparison to SL.

Figures 37 presents SB of difficulty parameter estimates for the first seven blocks that were
repeatedly administered five times. The results indicate that item recovery accuracy improves
with the repeated usage of the same blocks, in the absence of parameter drift. Both linking
methods exhibit a decreasing trend in SB, with the SL method demonstrating a slight advantage
under this criterion. This advantage is evident as the majority of lines appeared lower in position
compared to SM, indicating better performance in terms of SB for the SL method.

4.3 Relationship between Item Parameters and Accuracy of Parameter
Recovery

This section examines the relationship between the accuracy of item parameter recovery and the
magnitude of item parameters. Specifically, Figure 38 illustrates the correlation between item
discrimination parameters and SB of item discrimination parameter estimates. The plot is based
on the 2-PL chained design with the decreasing ability distribution condition. Again, varying
ability distribution did not affect the comparative performances of the two linking methods.
Items from all 47 blocks were ranked based on their item discrimination parameters. The lowest
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30% were categorized as “Low,” the middle 40% as “Medium,” and the highest 30% as “High.”
The colored dots on the plot represent this ranking, with the darkest blue dots indicating items
in the “High” category. The majority of the darkest blue dots are associated with relatively
larger SBs, indicating that there exists a positive correlation between the item discrimination
parameters and the SB of the item discrimination estimates. The correlation coefficient was 0.34
for the SM method and 0.39 for the SL method.

Similar results were observed for item difficulty parameters (see Figure 39). The correlation
between item difficulty parameters and SB of item difficulty estimates was .36 for SM and .46 for
SL, indicating a relatively strong positive relationship. Even stronger correlations were observed
in terms of variance and MSE. Figures 40 and 41 present relationships between parameter val-
ues and variances in estimates for discrimination and difficulty parameters, respectively. Based
on Figure 40, the correlation between item discrimination parameters and the variance of the
estimates was .67 for both SM and SL. Figure 41 shows that the correlation between item diffi-
culty parameters and the variance of their estimates was .50 for both SM and SL. Furthermore,
Figures 42 and 43 present relationships between parameter values and MSEs in estimates for
discrimination and difficulty parameters, respectively. The correlation was .67 and .66 for SM
and SL, respectively. Finally, the correlation between item difficulty parameters and the MSE of
the estimates was .51 for SM and .50 for SL.

The aforementioned findings pose a question regarding the balance between the quality of
test items and potential linking errors. Although highly discriminating items (and items with
increased difficulty in certain situations) are generally preferred, the utilization of such items
may lead to notable linking errors. The determination of the right balance between these factors
remains an area requiring further investigation.

5 Discussion

The primary goal of this study is to explore how simultaneous linking compares to Stocking-
Lord method under the same linking conditions. Additionally, we aim to investigate whether the
repeated use of the same blocks introduces bias into item parameter estimates. Our key findings
are summarized as follows:

• For the 2-PL model, SM produced lower SB values for item discrimination parameters
and higher SB values for item difficulty parameters compared to SL for both chained and
5-replication designs.

• For the 1-PL model, SM produced higher SB values for item difficulty parameters than SL
in the chained design, but no clear pattern was found in the 5-replication design.

• SM produced smaller variance and MSE values for nearly all conditions, with the exception
being the 2-PL chained design.

• The SB values of the TCC criteria fluctuated, yet heavily driven by the item difficulty
parameter.

• Varying ability distributions did impact the magnitude of bias and other evaluation criteria,
but did not change the overall performance pattern of the two linking methods.

• Under the assumption of no parameter drift, the repeated use of the same items did not
introduce bias to the item parameters. Indeed, the more you use the items, the more
accurate the results can be.

• The differences in performance between SM and SL were minimal.
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This study’s major finding is that SM exhibited better performance in estimating item dis-
crimination parameters, while SL was better at recovering item difficulty parameters under the
2-PL model. Notably, SM requires a two-step minimization process to estimate the slope and
intercept for scale transformation separately. Initially, the slope is estimated first, and sub-
sequently it is used to find the intercept. In contrast, SL estimates both slope and intercept
concurrently. This procedural distinction could potentially explain the differential performance
in recovering the discrimination and difficulty parameters between the two methods. However,
further research would be needed to delve deeper into this phenomenon.

Both SM and SL demonstrated a gradual accumulation of errors over time in the chained
design. Although SM showed certain advantages in specific scenarios, the overall amount of
error accumulated was comparable between the two linking designs, and the magnitude of error
was exceedingly small. It is important to acknowledge that claiming SM as a method that
completely prevents error accumulation may be problematic, as it solely relies on a single model
specification. In reality, both SM and SL have the potential to mitigate the risk of substantial
cumulative errors. Additionally, we found that utilizing the same blocks repeatedly proved to be
an effective strategy for enhancing the accuracy of parameter recovery in linking, as evidenced
by the observed decreasing trend in error across repetitions. This approach may also allow for a
reduction in the number of items required in the item bank. However, it is crucial to consider the
potential security implications of overexposing test items. Furthermore, we face the challenge of
determining whether to update or retain parameter estimates for recurring items.

Parameter drift was intentionally omitted from the scope of the current simulation study
due to the inherent challenge associated with establishing meaningful evaluation criteria when
parameter drift is present. Variability and shifts in item parameters over time make it difficult
to establish a consistent criterion for evaluating the performance of different linking methods. In
future research, it would be worthwhile to develop effective criteria for evaluating the impact of
parameter drift on linking through simulation studies.

Considering the ease of catching parameter drift, the use of separate calibration with SL
transformation can be a favorable option. By evaluating item parameter estimates at each
administration, any abnormal deviation can be identified. From an operational standpoint, the
SM method offers the advantage of requiring only one estimation process. However, it should
be noted that this approach necessitates having access to all item parameter estimates from all
administrations at the time of linking, which may not always be feasible. In such circumstances,
separate calibration procedures become more viable alternatives.

As discussed earlier, the SL method produces multiple sets of estimates for the common items,
making it difficult to compare directly to SM. Considering the nature of the SM method, it may
be more suitable to compare it with linking methods specifically designed for multiple groups.
Researchers have conducted investigations into the expansion of widely employed linking tech-
niques through separate calibrations for multiple groups or have introduced novel methodologies
to address the challenges posed by multiple test forms. For instance, Battauz (2017) proposed
a generalization of the mean-geometric mean, mean-mean, Haebara, and Stocking-Lord meth-
ods to multiple test forms. Robitzsch (2020b) introduced the robust Haebara linking approach,
which incorporates a power loss function to compare many groups. Furthermore, Battauz and
Leôncio (2023) developed a likelihood-based approach to account for the heteroscedasticity and
correlation of the item parameter estimates of multiple test forms. While these approaches are
not within the scope of our current investigation, future research would be needed to assess and
evaluate the effectiveness of these methods.

The items used in the present study were dichotomous, and the next logical step would be
to extend the SM method to polytomous items and mixed format tests. Additionally, while our
study scenarios focused solely on horizontal scaling, it would be intriguing to explore how SM
performs under vertical scaling scenarios. This expanded exploration will contribute to a more
comprehensive understanding of both the strengths and limitations of SM compared to SL across
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a variety of linking scenarios.
This study has enhanced our understanding of the relative performance of SM when com-

pared to separate calibration through SL transformation. While certain patterns of differential
performance were noted, overall, both methods demonstrated comparable performance. Our
findings highlight the importance of thoughtful consideration of various factors, such as the IRT
model, item banking, and linkage design, when choosing a linking method.
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Table 1
Average Block Descriptive Statistics of Item Parameters in Each Linking Design

2-PL 1-PL

Chained 5-Replication Chained 5-Replication

a b a b a b a b

Mean .914 .439 .914 .439 .570 -.004 .570 -.006

SD .231 .749 .231 .749 .000 1.193 .000 1.194

Maximum .924 .449 .924 .449 .570 .029 .570 .026

Minimum .906 .430 .906 .430 .570 -.028 .570 -.028

Note. Notations a and b refer to discrimination and difficulty parameters, respectively.
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Figure 1
Chained Design
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Figure 2
5-Replication Design
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Figure 3
SB of Item Discrimination by Block (2-PL, Chained Design)

Figure 4
SB of Item Difficulty by Block (2-PL, Chained Design)
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Figure 5
Variance of Item Discrimination by Block (2-PL, Chained Design)

Figure 6
Variance of Item Difficulty by Block (2-PL, Chained Design)
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Figure 7
MSE of Item Discrimination by Block (2-PL, Chained Design)

Figure 8
MSE of Item Difficulty by Block (2-PL, Chained Design)
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Figure 9
SB, Variance, MSE of Item Discrimination by Year (2-PL, Chained Design)

Figure 10
SB, Variance, MSE of Item Difficulty by Year (2-PL, Chained Design)
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Figure 11
SB of TCC Criteria by Block (2-PL, Chained Design)

Figure 12
SB, Variance, MSE of TCC Criteria by Year (2-PL, Chained Design)
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Figure 13
SB of Item Discrimination by Block (2-PL, 5-Replication Design)

Figure 14
SB of Item Difficulty by Block (2-PL, 5-Replication Design)
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Figure 15
Variance of Item Discrimination by Block (2-PL, 5-Replication Design)

Figure 16
Variance of Item Difficulty by Block (2-PL, 5-Replication Design)
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Figure 17
MSE of Item Discrimination by Block (2-PL, 5-Replication Design)

Figure 18
MSE of Item Difficulty by Block (2-PL, 5-Replication Design)
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Figure 19
SB, Variance, MSE of Item Discrimination by Year (2-PL, 5-Replication Design)

Figure 20
SB, Variance, MSE of Item Difficulty by Year (2-PL, 5-Replication Design)
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Figure 21
SB of TCC Criteria by Block (2-PL, 5-Replication Design)

Figure 22
SB, Variance, MSE of TCC Criteria by Year (2-PL, 5-Replication Design)
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Figure 23
SB of Item Discrimination for the First Seven Blocks (2-PL, 5-Replication Design)

Figure 24
SB of Item Difficulty for the First Seven Blocks (2-PL, 5-Replication Design)
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Figure 25
SB of Item Difficulty by Block (1-PL, Chained Design)

Figure 26
Variance of Item Difficulty by Block (1-PL, Chained Design)
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Figure 27
MSE of Item Difficulty by Block (1-PL, Chained Design)

Figure 28
SB, Variance, MSE of Item Difficulty by Year (1-PL, Chained Design)
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Figure 29
SB of TCC Criteria by Block (1-PL, Chained Design)

Figure 30
SB, Variance, MSE of TCC Criteria by Year (1-PL, Chained Design)
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Figure 31
SB of Item Difficulty by Block (1-PL, 5-Replication Design)

Figure 32
Variance of Item Difficulty by Block (1-PL, 5-Replication Design)
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Figure 33
MSE of Item Difficulty by Block (1-PL, 5-Replication Design)

Figure 34
SB, Variance, MSE of Item Difficulty by Year (1-PL, 5-Replication Design)
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Figure 35
SB of TCC Criteria by Block (1-PL, 5-Replication Design)

Figure 36
SB, Variance, MSE of TCC Criteria by Year (1-PL, 5-Replication Design)
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Figure 37
SB of Item Difficulty for the First Seven Blocks (1-PL, 5-Replication Design)

Figure 38
Relationship between True Item Discrimination and SB of the Estimated Item Discrimination
(2-PL, Chained Design)
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Figure 39
Relationship between True Item Difficulty and SB of the Estimated Item Difficulty (2-PL,
Chained Design)

Figure 40
Relationship between True Item Discrimination and Variance of the Estimated Item Discrimi-
nation (2-PL, Chained Design)
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Figure 41
Relationship between True Item Difficulty and Variance of the Estimated Item Difficulty (2-PL,
Chained Design)

Figure 42
Relationship between True Item Discrimination and MSE of the Estimated Item Discrimination
(2-PL, Chained Design)
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Figure 43
Relationship between True Item Difficulty and MSE of the Estimated Item Difficulty (2-PL,
Chained Design)
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