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Abstract

The construction of test forms including common items can be challeng-
ing. By combining the classical congeneric model with analytic standard errors
derived by the delta method, this study develops a process for estimating the
numbers of common items that are necessary to provide the desired equating
precision indexed by the standard error of equating. The chained linear equating
method is studied. Both external and internal sets of common items are consid-
ered, along with a variety of real test situations represented by test reliability,
sample size available, and score range of interest.
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1 Introduction

In common item equating, scores on test Form X are equated to scores on test
Form Y using scores on a set of items, V, that are in common to the two forms.
When scores on the common items contribute to the total score on test forms
X and Y, the common items are referred to as being internal. When scores on
the common items do not contribute to the total score on test forms X and Y,
the common items are referred to as being external.

In common item equating, the groups of examinees taking test forms X and
Y can be considered to be equivalent in ability, such as when forms X and
Y are randomly assigned to examinees for the purposes of equating using the
random groups design (Kolen & Brennan, 2004). Alternatively, the groups can
be considered not equivalent in ability using what is sometimes referred to as the
common item nonequivalent groups design (CINEG, Kolen & Brennan, 2004)
or as the nonequivalent groups anchor test design (NEAT, Holland & Dorans,
2006).

The construction of test forms including common items is one of the most
challenging parts of common item equating (Kolen & Brennan, 2004). Some pre-
vious studies have empirically shown that larger numbers of common items gen-
erally produced greater equating precision (Puhan, 2010; Ricker & von Davier,
2007; Wang, Lee, Brennan, & Kolen, 2006; Yang & Houang, 1996). However,
since the findings were based on specific test data and situations by manipulat-
ing the numbers of common items in a limited manner, the generalizability of
these results is uncertain. Also, no general analytic process exists in the liter-
ature for estimating the numbers of common items leading to desired equating
precision.

In this study it is also shown that the number of common items included
in equating has a direct effect on the precision of the estimates of the equating
relationship, with larger numbers of common items leading to greater precision.
Furthermore, when designing equating studies, the test developer can base the
choice of the number of common items on the degree of equating precision
desired. The purpose of this study is to detail a process that can be used to
choose the numbers of common items that are necessary to provide the desired
degree of equating precision when using chained linear equating procedures.
Both external and internal sets of common items are considered.

In this study, under the classical congeneric model, the precision of equating
is shown to be related directly to the correlation between the scores on the total
test and scores on the common items. The development of the approach begins
by showing how this correlation relates to reliability for the total test and the
ratio of test lengths for the common items and total numbers of items on the
test. The development of the approach then relates this correlation to equating
precision as indexed by the standard error of equating (SEE). After specifying
reliability of the total test, the sample size available, the score range of interest,
and the degree of precision desired, the procedures described in this study allow
the test developer to choose the length of the set of common items that will
lead to the desired equating precision when the chained linear equating method

1
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is used. In the present study, two major assumptions are made that the groups
are equivalent in ability and the score distributions are normal. The simulation
provides an empirical check on the extent to which the results hold when these
assumptions are violated.

2 Classical Congeneric Model Results

Let X, Y , and V represent the random variable observed scores on test forms X,
Y, and the set of common items V, respectively. As assumed in the classical test
theory, every observed score on a test form or, more generally, on a set of items
is the sum of two exclusive components, true score T and error of measurement
E (Feldt & Brennan, 1989; Kolen & Brennan, 2004). Subscripts are needed
to specify which test form or item set is considered. For example, TX and EX
denote true score and error of measurement related to test form X.

In classical test theory, varying degrees of heterogeneity between test forms
are studied by using different conceptions of parallel measurements (Feldt &
Brennan, 1989). In this study, the classical congeneric model is chosen for test
form X and the set of common items V because of its flexibility in reflecting
similarity and dissimilarity between a test form and a subset of items on the
test. Similar results can be extended to test form Y and the set of common
items V.

According to Kolen and Brennan (2004), the following properties hold if the
classical congeneric model is assumed.

1. True scores TX and TV are linearly related, where λ’s and δ’s are slopes
and intercepts respectively, as

X = TX + EX = (λXT + δX) + EX , (1)

and
V = TV + EV = (λV T + δV ) + EV . (2)

2. Error variances are proportional to effective test lengths λX and λV as

σ2(EX) = λXσ
2(E), (3)

and
σ2(EV ) = λV σ

2(E). (4)

3. Score variances and covariances are derived from Equations 1 through 4
as

σ2(X) = λ2Xσ
2(T ) + λXσ

2(E), (5)

σ2(V ) = λ2V σ
2(T ) + λV σ

2(E), (6)

and
σ(X,V ) = λXλV σ

2(T ) + σ(EX , EV ). (7)

2
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For convenience, Equations 6 and 7 can be rewritten as equations involving
only the observed score variance σ2(X), reliability for the total test ρ(X,X ′),
and effective test lengths λX and λV , where reliability ρ(X,X ′) is defined as

σ2(Tthe ratio X) σ2(E= 1 − X) (Feldt & Brennan, 1989). Specifically, for theσ2(X) σ2(X)

classical congeneric model, Equation 6 is rewritten as

σ2(V ) = λ2V σ
2(T ) + λV σ

2(E)

=
λ2V
λ2X
· λ2Xσ2(T ) +

λV
λX
· λXσ2(E)

=
λ2V
λ2X

σ2(TX) +
λV
λX

σ2(EX)

=
λ2V
λ2X

σ2(X)ρ(X,X ′) +
λV
λX

σ2(X)[1− ρ(X,X ′)]

=
λV
λX

σ2(X)

[
1 +

(
λV
λX
− 1

)
ρ(X,X ′)

]
. (8)

When V is an external set of common items, σ(EX , EV ) = 0, and σ(X,V ) =
λXλV σ

2(T ) (Kolen & Brennan, 2004). Thus, Equation 7 can be rewritten as

σ(X,V ) = λXλV σ
2(T )

=
λV
λX
· λ2Xσ2(T )

=
λV
λX

σ2(TX)

=
λV
λX

σ2(X)ρ(X,X ′). (9)

When V is an internal set of common items, σ(EX , E
2

V ) = λV σ (E), and
σ(X,V ) = λXλV σ

2(T ) + λV σ
2(E) (Kolen & Brennan, 2004). Similarly, Equa-

tion 7 can be rewritten as

σ(X,V ) = λXλV σ
2(T ) + λV σ

2(E)

=
λV
λX

[λ2Xσ
2(T ) + λXσ

2(E)]

=
λV
λX

σ2(X). (10)

For an external set of common items, by substituting Equations 8 and 9 in
the equation for the Pearson product-moment correlation coefficient, an expres-
sion for the squared correlation between the scores on the total test and scores
on the common items, ρ(X,X ′), is developed, where k is defined as the ratio
λV representing the relative length of the set of common items (k > 0), asλX

3
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ρ2(X,V ) =
σ2(X,V )

σ2(X)σ2(V )
=

[λV

λX
σ2(X)ρ(X,X ′)]2

σ2(X) · λV

λX
σ2(X)[1 + (λV

λX
− 1)ρ(X,X ′)]

=
kρ2(X,X ′)

1 + (k − 1)ρ(X,X ′)
. (11)

For an internal set of common items, the expression of ρ2(X,V ) is developed
by using Equations 8 and 10 in a similar manner (0 < k ≤ 1) as

ρ2(X,V ) =
σ2(X,V )

σ2(X)σ2(V )
=

[λV

λX
σ2(X)]2

σ2(X) · λV

λX
σ2(X)[1 + (λV

λX
− 1)ρ(X,X ′)]

=
k

1 + (k − 1)ρ(X,X ′)
. (12)

Table 1 shows that when V is an external set of common items, the squared
correlation ρ2(X,V ) changes as ρ(X,X ′) and k change. Figure 1 (upper part)
graphically illustrates this relationship. For a fixed k, higher test reliability
lends to higher ρ2(X,V ). For fixed test reliability, the longer k is, the higher
ρ2(X,V ). ρ2(X,V ) would reach 1 only when ρ(X,X ′) = 1.

The internal common items case is shown in Table 2 and Figure 1 (lower
part). Note that V and X are actually the same when k = 1. The relationship of
ρ2(X,V ), ρ(X,X ′) and k is similar to the external common items case, except
that ρ2(X,V ) eventually reaches 1 when k = 1.

3 Chained Linear Equating Method

In the CINEG design, the chained equating method generally involves two steps
(Kolen & Brennan, 2004). First, scores on test form X are converted to scores
on the common items V based on the group of examinees taking test form X
(Group 1), denoted as X → V . Next, scores on the common items V are
converted to scores on test form Y based on the group of examinees taking
test form Y (Group 2), denoted as V → Y . In this study, the chained linear
equating method is considered. As its name suggests, this equating method
contains two linear conversions, X → V and V → Y . The chained linear
equating method is relatively simple and straightforward compared with other
equating methods, and it still can be formulated within the general framework
for observed-score equating relationships (Brennan, 2006). In addition, the
chained linear equating method often leads to greater random error of equating
compared to other linear methods used for common-item equating (Kolen &
Brennan, 2004). Thus, estimation of the number of common items based on
this equating method might be fairly conservative.

Suppose scores on test form X and the common items V in Group 1 satisfy
a bivariate normal distribution. Let µ(X) and σ(X) denote the mean and
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standard deviation of scores on form X, and let µ(V ) and σ(V ) denote mean
and standard deviation of scores on the set of common items V. Use N to
represent the sample size. Subscripts are used to differentiate group membership
only when confusion may otherwise occur. For every possible score xi on test
form X, an approximation of random error variance for the single group linear
equating X → V was originally proposed by Lord (1950) (also see Angoff, 1971;
Kolen & Brennan, 2004) as

var[l̂V (xi)] ∼=
σ2
1(V )[1− ρ(X,V )]

N1

{
2 + [1 + ρ(X,V )]

[
xi − µ(X)

σ(X)

]2}
. (13)

A similar equation also holds for the single group linear equating V → Y in
Group 2 if scores on test form Y and the common items V are assumed to have
a bivariate normal distribution as

var[l̂Y (vi)] ∼=
σ2(Y )[1− ρ(Y, V )]

N2

{
2 + [1 + ρ(Y, V )]

[
vi − µ2(V )

σ2(V )

]2}
. (14)

According to Braun and Holland (1982), if two equating chains, X → V and
V → Y , are statistically independent, the error variance of the entire chained

ˆ ˆequating, var[êY (xi)], could be estimated based on var[lV (xi)] and var[lY (vi)],

var[êY (xi)] ∼= var[l̂Y (vi)] + [l̂′Y (vi)]
2var[l̂V (xi)], (15)

where l̂′Y (vi) indicates the slope of the linear conversion from V to Y that is σ(Y )
σ2(V )

by the definition of linear equating (Kolen & Brennan, 2004). As a result of a

linear conversion, two z-scores vi−µ1(V )
σ1(V ) and xi−µ(X)

σ(X) should be equal, denoted by

zi = vi−µ1(V )
σ1(V ) = xi−µ(X)

σ(X) . By substituting Equations 13 and 14 in Equation 15

and assuming that,

1. groups are equivalent in ability, so that µ1(V ) = µ2(V ) and σ1(V ) =
σ2(V ),

2. the correlation between X and V in Group 1 equals the correlation between
Y and V in Group 2, ρ(X,V ) = ρ(Y, V ), and

3. numbers of examinees taking test forms X and Y are equal, namely N1 =
N2 = Ntot

2 , where Ntot represents the total sample size,

an approximation of random error variance for the chained linear equating
method is as follows

5
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var[êY (xi)] ∼= var[l̂Y (vi)] + [l̂′Y (vi)]
2var[l̂V (xi)]

=
σ2(Y )[1− ρ(Y, V )]

N2

{
2 + [1 + ρ(Y, V )]

[
vi − µ2(V )

σ2(V )

]2}

+

[
σ(Y )

σ2(V )

]2
σ2
1(V )[1− ρ(X,V )]

N1

{
2 + [1 + ρ(X,V )]

[
xi − µ(X)

σ(X)

]2}

=
4σ2(Y )[1− ρ(X,V )]

Ntot
{2 + [1 + ρ(X,V )]z2i }. (16)

Letting Y be standardized to having a mean of 0 and a standard deviation
of 1,

var[êY (xi)] ∼=
4[1− ρ(X,V )]

Ntot
{2 + [1 + ρ(X,V )]z2i }. (17)

This result is also consistent with the equation presented by Lord (1950) for
“Case IV” in which test forms X and Y are both equated to the set of common
items V (also see Angoff, 1971).

Example

By substituting the expressions in Equation 11 or 12 for ρ(X,V ) in Equation 16
or 17, error variance for equating can be viewed as a function of reliability,
ρ(X,X ′), relative effective test length, k, sample size, Ntot, and standardized
score zi. Suppose that there is a desire to estimate the length of the set of
common items necessary for the equating to have a certain level of precision
over a range of z-scores. Assume that reliability of the test is known and that
the sample size available for equating is known as well. Equations 16 and 17
can be used to find the approximate number of common items needed to achieve
the desired equating precision.

Consider the following example. An external set of common items is to be
used. The test contains 50 multiple-choice items. Test reliability is 0.8 and
the available sample size for equating is Ntot = 2, 000. Also assume that the
target equating precision is a standard error of equating of 0.1 or below over
the range of z-scores from -3 to 3. Table 3 provides standard errors of equating
(square root of error variance) for this situation at various values of k and at
various z-scores. Based on this table, approximately k = 0.50 or greater is
necessary to achieve the precision target. Because the test length is 50 items,
the common items length should be at least 25 items to achieve the precision
target. Note that when using external common items, the relative length of the
set of common items can be even longer than the total test.

Now consider that all of the same characteristics hold, except that an internal
set of common items is to be used. Based on Table 4, approximately k = 0.20 or
greater would be needed to achieve the target precision. Thus, an internal set

6
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of common items of at least 10 items would be needed to achieve the precision
target.

The values in Table 3 and 4 are shown graphically in Figure 2. As can be
seen, for a given value of k the minimum standard error of equating is at a z-score
of 0, and the more the z-scores deviate from 0 the greater is the standard error
of equating. For the external common items, the standard errors of equating
are clustered together more than for the internal common items. In addition,
using the internal set of common items leads to smaller standard errors than
using the external set of common items.

4 Direct Estimates of Lower Bound of the Num-
ber of Common Items Needed

As mentioned in the previous example, in practice, the test developer may need
to decide on the relative length of the set of common items that are necessary
to provide the desired degree of equating precision. In the previous section, two
tables were created that were used to provide an approximate procedure for
finding the length of the external and internal set of common items respectively.
In this section, a procedure that can be used to directly estimate the length of the
common items is developed. It is based on test reliability, ρ(X,X ′), the sample
size available, Ntot, target SEE in terms of numbers of standard deviation units,
u, and standardized test scores of interest, zi. Some tables are also created so
the test developer can easily deal with a variety of test construction situations.

In general, this process involves four steps.
Step 1. Specify Ntot and u.
It is not surprising that, when the sample size used for equating is large or

the test developer has a high tolerance of equating error or both, the target
equating precision can be achieved even when relatively shorter sets of common
items are used. However, when the sample size available is limited or the desired
equating precision is strict, constraints placed on the number of common items
become stringent. Then there is a need to estimate the lower bound of the
number of common items necessary.

Step 2. Determine zi.
Every test is designed to fulfill some specific purposes. As a result, the score

range of interest varies from test to test. For example, a test that provides
information for selecting scholarship recipients tends to focus more on better-
than-average performances, whereas a test that is to be used for a variety of
purposes might need precision for a wide range of scores. Accordingly, in terms
of standardized score zi, the range of interest might be 1.5 ≤ zi ≤ 3 for the
former, whereas it could be −3 ≤ zi ≤ 3 for the latter. As shown in Figure 2 in
the previous example, random equating error reaches its lowest value at zi = 0,
and increases as it deviates from the middle scores. Consequently, especially
when the score range of interest covers some extreme score values, the number of
common items should be large enough to provide the desired equating precision

7
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at these extreme values.
Step 3. Choose the type of common items, internal or external.
Type of common items, internal or external common items, may also be a

factor when deciding the length of the set of common items needed.
Step 4. Specify test reliability.
If test reliability is too low, it might be impossible to find a lower bound of

the number of common items needed. Note that under the classical congeneric
model, reliability for test form X can be estimated by Feldt’s internal consistency
coefficient (Feldt & Brennan, 1989) as ∑

S2
X(S2 −X S2

X )
F ρ̂XX′ = ∑ f ,

S4 −X S2
XfX

where S2
X is the total score variance, S2

X is the variance for individual item Xf ,
f

and SXfX is the covariance between individual item Xf and total test score
X. In practice, however, Cronbach’s alpha is routinely reported as an index
of test reliability, which is under the essentially tau-equivalent model. Feldt
and Brennan (1989) provided an example that compared different reliability
coefficient estimates based on the same variance-covariance matrix (see pp. 114–
116).

The process for choosing k is represented in the flowchart in Figure ??,
and detailed analytic derivations are provided in the Appendix. As seen in the
flowchart, there are five different results regarding the choice of the number of
common items necessary to provide the target SEE, and sometimes a result can
be reached without going through all four steps. The following set of examples
is used to demonstrate the use of the flowchart in practice.

Example

Consider the example described in the previous section. The sample size avail-
able for equating is Ntot = 2, 000, and the target SEE is assumed to be u = 0.1
standard deviation units. At Step 1,

Ntotu
2 = 2000(0.1)2 = 20 > 8,

so branch left and move to Step 2. At Step 2, squared z-scores of interest are
compared with a criterion,

Ntotu
2 − 8

4
=

2000(0.1)2 − 8

4
= 3.

Suppose the z-score range of interest is from -1.5 to 1.5. Note that every
possible z2 ≤i (1.5)2 = 2.25 < 3, so branch left again and move to Result 1.
That is, under this situation, the target SEE will always be achieved regardless
of the value of k assuming that the test satisfies the requirements of the classical
congeneric model and randomly equivalent groups are administered Forms X
and Y.

8
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Suppose that all of the same characteristics hold, except that the z-score
range of interest now is from -3 to 3. As a result, at Step 2, some z2i can exceed
the criterion, so branch right instead, and move to Step 3. Now, the type of
common items directly affects the estimation of the lower bound of the number
of common items necessary to achieve the target SEE. If external common items
are to be used, then test reliability needs to be higher than a criterion,

ρ2H =

−1 +
√
z4i −

Ntotu2−8
4z2i

+ 1

z2i

2

∼= 0.51.

Otherwise, it is impossible to achieve the target SEE regardless of the choice
of the number of common items included (Result 3). Assume that test reliability
is 0.8 which is higher than 0.51, and then go to Result 2; that is, the relative
length of the set of common items is

k ≥ ρ2H [1− ρ(X,X ′)]

ρ(X,X ′)[ρ(X,X ′)− ρ2H ]
∼= 0.44.

Thus, if the test contains 50 items, at least 0.44(50) = 22 external common
items should be used. If internal common items are to be used, go to Result 4;
that is, the relative length of the set of common items is

k ≥ ρ2H [1− ρ(X,X ′)]

1− ρ2Hρ(X,X ′)
∼= 0.17.

∼Similarly, for a test including 50 items, at least 0.17(50) = 8.5 = 9 internal
common items are necessary. Tables 5 and 6 provide estimates of k using exter-
nal and internal sets of common items at various combinations of sample sizes,
Ntot, and degree of precision, u, where reliability is 0.8, and z-scores range from
-3 to 3.

5 Simulation

In this study, two major assumptions are made in order to derive a simplified
form for estimating SEE for the chained linear equating method and a practical
process for directly estimating the number of common items needed to achieve
desired equating precision. These assumptions are discussed in more detail in
this section. Two separate simulation studies are presented. Simulation Study
1 focuses on the accuracy of simplified random error estimation for the chained
linear equating when two major assumptions are violated to varying degrees.
Simulation Study 2 provides some modifications for using Tables 5 and 6 to
choose appropriate numbers of common items when the two major assumptions
are violated.

The first assumption is that the two groups used for equating are equivalent
in ability, and in particular, that the means and variances of scores on the
common items in the two groups are identical. Namely, µ1(V ) = µ2(V ) and
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σ2
1(V ) = σ2

2(V ). This assumption is very useful in deriving a simplified form
for estimating random error variance for the chained linear equating based on
two equating links X → V and V → Y . However, in many situations where
common items are involved, the groups taking different forms differ from one
another by varying amounts. The group equivalence assumption can be violated
slightly or dramatically. In the simulation studies, an effect size parameter is
defined to reflect the group difference,

ES =
µ1(V )− µ2(V )√
N1σ2

1(V )+N2σ2
2(V )

N1+N2

, (18)

where all the parameters involved in the equation are defined in previous sec-
tions. When groups are equivalent in terms of equal means, ES is exactly zero.
Otherwise, the larger ES is associated with greater group differences. When
the sample sizes taking two forms are identical, Equation 18 is simplified to
Equation 19 as

ES =
µ1(V )− µ2(V )√

σ2
1(V )+σ2

2(V )
2

. (19)

The second assumption is that score distributions are normal. Specifically,
scores on test form X and the common items V in Group 1 follow a bivariate
normal distribution, and similarly, scores on test form Y and the common items
V in Group 2 follow a bivariate normal distribution. The normality assump-
tion is important for developing a simplified form for estimating random error
variance for the chained linear equating. In practice, however, the normality
assumption might be violated. In the simulation studies, a lognormal distri-
bution and its translated mirror image are applied to simulate positively and
negatively skewed score distributions to assess the impact of violation of the
normality assumption.

5.1 Simulation Study 1

A crucial equation in this study is a simplified form for estimating the SEE for
the chained linear equating method, as shown in Equation 16 or 17. The only
difference between Equations 16 and 17 is whether Y is standardized to have a
mean of 0 and a standard deviation of 1.

Continue using the scenario that was introduced and discussed in previous
sections. That is, the test contains 50 multiple-choice items, test reliability is
0.8, and the available sample size for equating is Ntot = 2, 000, where 1,000
examinees take each form. In Simulation Study 1, the number of common items
is fixed at 20, which is 40% of the total test length. Both external and internal
sets of common items are considered. The following steps are used to evaluate
estimation accuracy of the analytic SEE for the chained linear equating:

1. Take a random sample of size 1,000 from a bivariate distribution of scores
on test Form X and common items V in Group 1. Take a random sample
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of size 1,000 from a bivariate distribution of scores on test Form Y and
common items V in Group 2.

2. Equate Form X to Form Y using the chained linear equating method
based on these random samples r. The estimated equating relationship is

(r)
denoted as êY (xi).

3. Use Equation 16 to estimate the SEE with statistics based on these random
(r)

samples r replacing parameters, referred to as ŜEE (xi).

4. Repeat steps 1-3 R times (R = 10, 000). There are two ways of estimating

SEE at every possible Form X raw score, xi, denoted as ŜEEa(xi) and

ŜEEb(xi) respectively.

(a) Compute the standard deviation of equated scores as√∑R (r)
[ )− ¯̂ r=1 êY (xi êY (x 2

i)]
SEEa(xi) =

N − 1
, (20)

¯where êY (xi) is the average equated score over R replications.

(r) (r)
(b) Average ŜEE (xi) over R replications, where ŜEE (xi) is com-

puted at Step 3,

ŜEEb(xi) =
1

R
ŜEE

(r)
(xi). (21)

For the two estimates of SEE, ŜEEa(xi) is a straightforward estimated
standard error of equating obtained by simulation that is not affected by the
analytic estimation process. ŜEEb(xi) represents how Equation 16 might be
used in practice when values of population parameters are unknown.

Different degrees of violation of group equivalence and normality assump-
tions are reflected in the characteristics of population score distributions from
which Steps 1 and 2 draw samples. For potential group differences, eight levels
of ES are considered: 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, and 1.0. For potential score
distribution shapes, three levels are considered: normal, lognormal, and trans-
lated mirror image of lognormal, representing normal, positively skewed, and
negatively skewed distributions, respectively. In addition, two types of common
items, external and internal, are included. In total, there are 8 × 3 × 2 = 48
combinations of conditions. The replication process runs separately for each
condition by using R (R Development Core Team, 2005).

5.2 Simulation Results 1

Parameters for the simulation are summarized in Table 7. When a positively
skewed distribution is used, the skewness of scores on Form X in Group 1 is
approximately 0.77, and skewness of scores on Form Y in Group 2 varies from
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0.77 to 1.10 as the difference between two populations increases from 0 to 1.0 in
terms of ES. When a negatively skewed distribution is used, only the direction
of skewness changes to negative.

The accuracy of analytic SEE estimation is evaluated by examining the dif-
ference between the empirical SEE, ŜEEa(xi), and the analytic SEE, ŜEEb(xi),

x −µ(X)along the Form X z-score scale, where z i
i = . The difference is reflectedσ(X)

in the number of standard deviation units. The ideal value is 0, suggesting that
the analytic SEE estimation led to the same result as the empirical SEE. Positive
values indicate “overestimation” using the analytic procedure, and negative val-
ues are related to “underestimation” using the analytic procedure. The greater
the deviation from zero, the less the accuracy of the analytic SEE estimation.

As shown in Figures 4 to 6, within each distribution condition, larger ES
is associated with more “bias” in analytic estimation compared to empirical
estimation. When the normality assumption holds, the effect of group difference
on the accuracy of analytic SEE estimation is not very large. Even when the
group difference is as large as ES = 1.0, the difference between analytic SEE and
empirical SEE is still within -0.02 to 0.02 standard deviation units. However,
when score distributions are positively or negatively skewed, the accuracy of
analytic SEE is reduced especially when groups are largely different in ability.
Holding level of group difference and shapes of score distributions constant, the
use of an internal set of common items tends to produce more accurate analytic
SEE estimation compared to the use of an external set of common items.

Figure 7 focuses on the effect of shapes of score distributions on the accuracy
of analytic SEE estimation. For the six conditions as shown in the figure, groups
taking forms X and Y are equivalent, because ES = 0. Score distributions
are either normal, positively skewed, or negatively skewed. Both external and
internal common items are considered. When score distributions are normal,
the analytic SEE is very close to the SEE estimated empirically. However,
when score distributions are skewed, analytic estimation tends to overestimate
the SEE for scores near the middle and underestimate the SEE for scores near
either extreme. Using an internal set of common items generally produces more
accurate analytic estimation than using an external set of common items.

5.3 Simulation Study 2

Tables 5 and 6 in the previous section can provide test developers some practical
guidance in choosing the number of common items under certain conditions. Es-
timates in these tables are obtained by following the direct estimation procedure
that is also based on group equivalence and normality assumptions.

Simulation Study 2 intends to examine and modify estimates of relative
length of the set of common items, k, when two assumptions are violated by
different amounts. Three levels of group difference are considered: ES = 0,
ES = 0.2, and ES = 0.5. Three shapes of score distribution are considered:
normal, moderately positively skewed, and extremely positively skewed. A log-
normal transformation is used to simulate the extremely skewed condition where
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the skewness is approximately from 0.7 to 0.8. A hybrid lognormal and nor-
mal transformation is used to simulate the moderately skewed condition where
the skewness is around 0.2 to 0.3. Results for positively skewed distributions
are generalizable to those for negatively skewed distributions. Both external
and internal common items are used. In total, 3 × 3 × 2 = 18 combinations of
conditions are displayed.

Similar to Simulation Study 1, the test still consists of 50 multiple-choice
items, test reliability is 0.8, and the available sample size for equating is Ntot =
2, 000. The target SEE, u, in terms of numbers of standard deviation units is
fixed to be 0.10, and z-scores of interest range from -3 to 3. The following steps
are followed:

1. Initialize k using the value from Table 5 or 6 depending on which types of
common items are used. 1

2. Run R replications (R = 10, 000) as described in Simulation Study 1.

Only compute the empirical SEE, ŜEEa(xi), where zi = xi−µ(X)
σ(X) ranges

from -3 to 3.

3. Compare ŜEEa(xi) with uσ(Y ). If Table 5 or 6 works perfectly, the
SEE at the z-scores of interest, which is from -3 to 3, should fall below
u standard deviation units, which is uσ(Y ). Otherwise, because as k
increases, the SEE will decrease, a larger value of k will be considered.

(a) If max−3≤zi≤3ŜEEa(xi) < uσ(Y ), stop and report k as the modified
relative length of the set of common items.

(b) if max−3≤zi≤3ŜEEa(xi) ≥ uσ(Y ), add 0.02 to current k (i.e., use
50× 0.02 = 1 additional common item). For an internal set of com-
mon items, if the updated k exceeds 1.0, stop and report an error
message. Otherwise, go back to Step 2.

4. Repeat steps 1-3 T times (T = 20) to stabilize the estimation of k.

The replication process was conducted using R (R Development Core Team,
2005).

5.4 Simulation Results 2

Tables 8 and 9 contain summaries of modified k values and corresponding num-
bers of common items needed under the 18 different simulation conditions. Fig-
ure 8 directly illustrate the result as shown in Table 9. As expected, when
two major assumptions both hold, values from Tables 5 and 6 lead to the target
SEE. When a set of external common items is used, as the condition moves from

1To decide the initial value of k for some conditions, instead of using Table 5 or 6 that
might be inefficient and time-consuming, several additional simulation runs were done first to
gather a rough idea of the relationship between k and empirical SEE (similar to Simulation
Study 1).
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ideal (i.e., ES = 0, normal) to extreme (i.e., ES = 0.5, extremely skewed), the
number of common items that is necessary to meet the target SEE steadily in-
creases. When a set of internal common items is used, violation of the normality
assumption tends to affect the number of common items needed more dramat-
ically than violation of the group equivalence assumption. For example, when
the normality assumption holds, even as two groups differ from each other as
much as ES = 0.5, only two additional common items are needed to achieve the
target SEE. In general, compared to the use of a set of external common items,
the use of a set of internal common items leads to more stable estimation of
the number of common items necessary, although violation of both assumptions
still requires the number of common items needed to be approximately twice as
many as to achieve the same target SEE.

6 Discussion

Most previous studies on numbers of common items only provided exploratory
results concerning the relationship between the numbers of common items and
equating precision. These results were applicable to specific tests, situations,
and limited conditions of lengths for the common items. In this study a novel
way of understanding the relationship between number of common items and
equating precision is provided, by combining the classical congeneric model with
analytic standard errors derived by the delta method. This study describes a
process along with some figures and tables that can be used by the test devel-
opers to choose the length of the common item set that leads to the desired
equating precision under various real test situations.

For both external and internal common items, the relationship between test
score reliability for the total score on a test, the effective test length of the
common items, and the correlation between test scores and scores on common
items was derived analytically in this study using the classical congeneric model.
These relationships show clearly that as reliability and effective test length for
the common items increase, the correlation between total test and common item
scores increases. These derivations were used to illustrate how the standard
error of equating for chained linear equating is related directly to test reliability
and to the effective test length of the common items. In addition, a process
was developed to estimate the number of common items needed for a specified
degree of equating precision for chained linear equating.

Two points are worth noting when the estimated lower bound for the number
of common items is used in practice. Theoretically, the estimated lower bound
of the relative length of common items provided in this study is always a ratio of
effective test lengths, k = λV . In some situations, this ratio can be viewed, ap-λX

proximately, as the ratio of actual number of items, as described in the examples
in this study. In other situations, the relationship between the ratio of effective
test lengths and ratio of actual test lengths needs careful consideration, such as
when a test contains both multiple-choice and constructed-response questions.
In addition, as k approaches 0, the two test forms X and Y share few, if any,
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items in common. However, small values of k might lead to some problems in
applying these methods. One such problem is that, when the number of com-
mon items is very small, content and statistical representativeness are difficult
to maintain. In practice, the number of common items should, at a minimum,
be large enough to adequately represent the content of the total test.

Two simulation studies were used to empirically check the accuracy of the
simplified form for estimating SEE for the chained linear equating method and
the process for directly estimating the number of common items needed to
achieve desired equating precision when the group equivalence and normality
assumptions are violated. It appears that violation of the normality assumption
can lead to the analytic SEE being a substantial underestimate of the SEE and
number of common item required to meet target precision being substantially
underestimated by the simplified procedure. When the normality assumption
holds and the group differences are greater than zero, the analytic SEE is a
slight underestimate of the SEE and the number of common items required
to meet target precision is slightly underestimated. Overall, it appears that
the simplified process described in this study for estimating the SEE and the
number of common items needed to meet the target precision is reasonably
accurate when the scores are close to being normally distributed and the group
differences are not large.

7 Appendix

Larger numbers of common items generally provide greater equating precision.
Thus, estimation of the lower bound of the relative length of common items
required by the specified SEE is important. The following derivation consists
of two parts. First, the expected correlation between the scores on the total
test and scores on the common items, ρ(X,V ), given the specified situation is
evaluated. Next, the lower bound of the relative length of the common item set,
k, under the classical congeneric model is estimated. Various equating methods
may perform differently in terms of random error. The chained linear method
is examined in this study.

7.1 Evaluating the Expected Correlation, ρ(X, V )

Let u index the target SEE in terms of numbers of standard deviation unit such
that var[ê (x )] ≤ u2 2

Y i σ (Y ). Specifically, according to Equation 17, when Y is
standardized to have a mean of 0 and a standard deviation of 1,

var[êY (xi)] ≤ u2 ⇔ 4[1− ρ(X,V )]

Ntot
{2 + [1 + ρ(X,V )]z2i } ≤ u2

⇔ 1

Ntot
{−4z2i ρ

2(X,V )− 8ρ(X,V ) + (8 + 4z2i )} ≤ u2

⇔ z2i
2
ρ2(X,V ) + ρ(X,V ) +

(Ntotu
2 − 8)− 4z2i

8
≥ 0.(22)
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The final expression in Equation 22 is a quadratic inequality of ρ(X,V )
when zi = 0. The purpose of this step is to determine possible values of ρ(X,V )
which make the inequality in Equation 22 true. The relationship between the
determinant and the roots of a quadratic function plays an important role.

The determinant of the inequality in Equation 22 is

6

∆1 = 12 − 4 · z
2
i

2
· (Ntotu

2 − 8)− 4z2i
8

= z4i −
Ntotu

2 − 8

4
z2i + 1. (23)

Note that ∆1 is another quadratic function of z2i , and its determinant is

∆2 =

(
Ntotu

2 − 8

4

)2

− 4 · 1 · 1 =
Ntotu

2(Ntotu
2 − 16)

16
. (24)

Three conditions are discussed to explore possible values of ρ(X,V ).

Condition 1: Ntotu
2 > 16. Under this condition, ∆2 is always positive, and

consequently, ∆1 has two distinct roots as

(z2i )L ≡
Ntotu

2−8
4 −

√
∆2

2
=

(Ntotu
2 − 8)− 4

√
∆2

8
, (25)

and

(z2i )H ≡
Ntotu

2−8
4 +

√
∆2

2
=

(Ntotu
2 − 8) + 4

√
∆2

8
. (26)

It can be shown that both (z2i )L and (z2i )H are positive. Furthermore, if
(z2i )L ≤ z2i ≤ (z2i )H , then ∆1 ≤ 0 and the inequality in Equation 22 is always
true. Otherwise, if 0 < z2i < (z2i )L or z2i > (z2i )H , then ∆1 > 0 and the
inequality in Equation 22 has two distinct roots as

ρL ≡
−1−

√
∆1

z2i
, (27)

and

ρH ≡
−1 +

√
∆1

z2i
. (28)

The inequality in Equation 22 holds only if ρ(X,V ) ≤ ρL or ρ(X,V ) ≥ ρH .
Since ρL is always negative whereas the correlation between the scores on the
total test and scores on the common items, ρ(X,V ), is expected to be positive
for a well-designed test, possible values of ρ(X,V ) should be no less than ρH .
The sign of ρH decides whether this requirement is trivial. Specifically,
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ρH ≡ −1 +
√

∆1

z2i
> 0

⇔ −1 +
√

∆1 > 0

⇔ ∆1 > 1

⇔ z4i −
Ntotu

2 − 8

4
z2i > 0

⇔ z2i >
Ntotu

2 − 8

4
. (29)

Thus, if z2i > Ntotu
2−8

4 , then ρ(X,V ) is expected to be larger than ρH .
Otherwise, because ρ(X,V ) is expected to be positive, the inequality ρ(X,V ) >
0 ≥ ρH always holds. It can be shown that either (z2i )L or (z2i )H is smaller than
Ntotu

2−8
4 , so the above results with regard to the intervals of z2i can be combined

and simplified.

In sum, under Condition 1, the specified precision is obtained for−
√
Ntotu2−8

2 ≤
zi ≤

√
Ntotu2−8

2 as long as the test is well developed. For either zi < −
√
Ntotu2−8

2

or zi >
√
Ntotu2−8

2 , the specified precision can only be achieved as the expected
correlation between the scores on the total test and scores on the common items,
ρ(X,V ), exceeds ρH .

Condition 2: 8 < Ntotu
2 ≤ 16. Under this condition, ∆2 is no longer positive.

As a result, ∆1 ≥ 0 and there always exist two distinct roots of the inequality

in Equation 22, ρL and ρH . Again, for −
√
Ntotu2−8

2 ≤ zi ≤
√
Ntotu2−8

2 , the
equating precision does not depend heavily on slight changes in ρ(X,V ) as long

as the test is well developed, whereas for zi < −
√
Ntotu2−8

2 or zi >
√
Ntotu2−8

2 ,
the specified precision required ρ(X,V ) ≥ ρH .

Condition 3: 0 < Ntotu
2 ≤ 8. Same as Condition 2, there exist two distinct

roots of the inequality in Equation 22, and the sign of ρH directly affect the
possible values of ρ(X,V ). However, as Ntotu

2 ≤ 8, the final inequality in
Equation 29 is always true with zi = 0, such that ρH > 0. Thus, to provide the
specified equating precision, ρ(X,V ) needs to exceed ρH .

6

Next, corresponding relative lengths of the common item set are estimated.

7.2 Estimating the relative length of common items, k

According to the discussion in previous subsection, sometimes the target equat-
ing precision can be achieved as long as the test forms are well constructed,
whereas other times, ρ(X,V ) needs to be no less than ρH which is a positive
value after test reliability, the sample size available, the degree of precision de-
sired, and the standardized score range have been clearly specified. Estimation
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of k for three different conditions defined in previous subsection are very similar.
Using external or internal common items always leads to different estimates.

For an external set of common items, substitute Equation 11 in ρ(X,V ) ≥
ρH ,

ρ(X,V ) ≥ ρH ⇔ ρ2(X,V ) ≥ ρ2H

⇔ kρ2(X,X ′)

1 + (k − 1)ρ(X,X ′)
≥ ρ2H

⇔ ρ(X,X ′)[ρ(X,X ′)− ρ2H ]k ≥ ρ2H [1− ρ(X,X ′)]. (30)

Note that if ρ(X,X ′) ≤ ρ2H , the final equality in Equation 30 never holds.
In other words, in some situations where ρ(X,X ′) ≤ ρ2H , the specified equating
precision cannot be obtained no matter how many common items are included.
The test developer needs to redesign the test or may be able to modify the
situation such as increasing the sample size. If ρ(X,X ′) > ρ2H , the lower bound
of the relative length of the set of common items is

k ≥ ρ2H [1− ρ(X,X ′)]

ρ(X,X ′)[ρ(X,X ′)− ρ2H ]
. (31)

For an internal set of common items, substitute Equation 12 in ρ(X,V ) ≥
ρH ,

ρ(X,V ) ≥ ρH ⇔ ρ2(X,V ) ≥ ρ2H

⇔ k

1 + (k − 1)ρ(X,X ′)
≥ ρ2H

⇔ k ≥ ρ2H [1− ρ(X,X ′)]

1− ρ2Hρ(X,X ′)
. (32)

In theory, the internal set of common items can be lengthened to be the total
test form eventually, so it is not surprising that any specified equating precision
can be provided.

Although the mathematical procedures dealing with Condition 1 and Con-
dition 2 are different, the final results turn out to be identical, so these two
conditions are combined into a single condition, Ntotu

2 > 8, for simplicity.
If zi = 0, the inequality in Equation 22 is linear rather than quadratic. The

whole procedure is analogous but can be simplified. The same conditions are
considered.

Condition 1: Ntotu
2 > 8. Under this condition, the equating precision does

not heavily depend on varying numbers of common items for a well-developed
test.
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Condition 2: 0 < Ntotu
2 ≤ 8. Under this condition, if external common

items are used and reliability of the total test exceeds (8−Ntotu
2)2

64 , the specified
precision is satisfied by choosing

k ≥ (8−Ntotu2)2[1− ρ(X,X ′)]

ρ(X,X ′)[64ρ(X,X ′)− (8−Ntotu2)2]
. (33)

If internal common items are used, the precision is always achieved by choos-
ing

k ≥ (8−Ntotu2)2[1− ρ(X,X ′)]

64− (8−Ntotu2)2ρ(X,X ′)
. (34)
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Table 1: ρ2(X,V ) as a function of ρ(X,X ′) and k using external common items

ρ(X,X ′)

k = λV

λX
0.70 0.75 0.80 0.85 0.90 0.95 0.99

0.10 0.1324 0.1731 0.2286 0.3075 0.4263 0.6224 0.8992
0.20 0.2227 0.2813 0.3556 0.4516 0.5786 0.7521 0.9424
0.30 0.2882 0.3553 0.4364 0.5352 0.6568 0.8082 0.9578
0.40 0.3379 0.4091 0.4923 0.5898 0.7044 0.8395 0.9656
0.50 0.3769 0.4500 0.5333 0.6283 0.7364 0.8595 0.9704
0.60 0.4083 0.4821 0.5647 0.6568 0.7594 0.8734 0.9736
0.70 0.4342 0.5081 0.5895 0.6789 0.7767 0.8836 0.9759
0.80 0.4558 0.5294 0.6095 0.6964 0.7902 0.8914 0.9777
0.90 0.4742 0.5473 0.6261 0.7107 0.8011 0.8975 0.9790
1.00 0.4900 0.5625 0.6400 0.7225 0.8100 0.9025 0.9801

Table 2: ρ2(X,V ) as a function of ρ(X,X ′) and k using internal common items

ρ(X,X ′)

k = λV

λX
0.70 0.75 0.80 0.85 0.90 0.95 0.99

0.10 0.2703 0.3077 0.3571 0.4255 0.5263 0.6897 0.9174
0.20 0.4546 0.5000 0.5556 0.6250 0.7143 0.8333 0.9615
0.30 0.5882 0.6316 0.6818 0.7407 0.8108 0.8955 0.9772
0.40 0.6897 0.7273 0.7692 0.8163 0.8696 0.9302 0.9852
0.50 0.7692 0.8000 0.8333 0.8696 0.9091 0.9524 0.9901
0.60 0.8333 0.8571 0.8824 0.9091 0.9375 0.9677 0.9934
0.70 0.8861 0.9032 0.9211 0.9396 0.9589 0.9790 0.9957
0.80 0.9302 0.9412 0.9524 0.9639 0.9756 0.9877 0.9975
0.90 0.9677 0.9730 0.9783 0.9836 0.9890 0.9945 0.9989
1.00 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table 3: Estimated standard errors of equating using external common items
(ρ(X,X ′) = 0.8, Ntot = 2, 000)

zi

k = λV

λX
0 ±0.5 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0

0.10 0.0457 0.0497 0.0603 0.0746 0.0909 0.1083 0.1264
0.20 0.0402 0.0440 0.0539 0.0672 0.0823 0.0983 0.1150
0.30 0.0369 0.0405 0.0499 0.0624 0.0766 0.0917 0.1073
0.40 0.0346 0.0380 0.0470 0.0590 0.0725 0.0868 0.1017
0.50 0.0329 0.0362 0.0449 0.0564 0.0694 0.0831 0.0974
0.60 0.0315 0.0348 0.0432 0.0543 0.0669 0.0802 0.0940
0.70 0.0305 0.0337 0.0418 0.0527 0.0649 0.0779 0.0912
0.80 0.0296 0.0328 0.0407 0.0513 0.0633 0.0759 0.0889
0.90 0.0289 0.0320 0.0398 0.0502 0.0619 0.0742 0.0870
1.00 0.0283 0.0313 0.0390 0.0492 0.0607 0.0728 0.0853

Table 4: Estimated standard errors of equating using internal common items
(ρ(X,X ′) = 0.8, Ntot = 2, 000)

zi

k = λV

λX
0 ±0.5 ±1.0 ±1.5 ±2.0 ±2.5 ±3.0

0.10 0.0401 0.0439 0.0538 0.0671 0.0822 0.0982 0.1148
0.20 0.0319 0.0352 0.0437 0.0549 0.0676 0.0811 0.0950
0.30 0.0264 0.0293 0.0365 0.0461 0.0569 0.0684 0.0802
0.40 0.0222 0.0246 0.0309 0.0391 0.0484 0.0581 0.0682
0.50 0.0187 0.0208 0.0261 0.0331 0.0410 0.0493 0.0579
0.60 0.0156 0.0174 0.0219 0.0278 0.0344 0.0414 0.0486
0.70 0.0127 0.0142 0.0179 0.0227 0.0282 0.0339 0.0398
0.80 0.0098 0.0110 0.0138 0.0176 0.0219 0.0263 0.0309
0.90 0.0066 0.0074 0.0093 0.0119 0.0148 0.0178 0.0209
1.00 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 5: Estimated lower bound of relative length of the external set of common
items (ρ(X,X ′) = 0.8, −3 ≤ zi ≤ 3)

u

Ntot 0.05 0.10 0.15 0.20 0.25 ≥ 0.30

500 0.44 0.11 < .01
550 0.34 0.07 < .01
600 0.27 0.04 < .01
650 0.99 0.21 0.02 < .01
700 0.81 0.17 < .01 < .01
750 0.67 0.13 < .01 < .01
800 0.57 0.10 < .01 < .01
850 0.49 0.07 < .01 < .01
900 0.42 0.05 < .01 < .01
950 0.37 0.03 < .01 < .01

1000 0.32 0.02 < .01 < .01
1200 0.19 < .01 < .01 < .01
1400 0.11 < .01 < .01 < .01
1600 0.78 0.05 < .01 < .01 < .01
1800 0.57 0.02 < .01 < .01 < .01
2000 0.44 < .01 < .01 < .01 < .01
2200 0.34 < .01 < .01 < .01 < .01
2400 0.27 < .01 < .01 < .01 < .01
2600 0.21 < .01 < .01 < .01 < .01
2800 0.17 < .01 < .01 < .01 < .01
3000 0.13 < .01 < .01 < .01 < .01

Note. Blank areas indicate that the precision target can never been achieved
regardless of the numbers of common items included. Some bounds may be too
low to maintain the content and statistical representativeness and need to be
used with caution.
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Table 6: Estimated lower bound of relative length of the internal set of common
items (ρ(X,X ′) = 0.8, −3 ≤ zi ≤ 3)

u

Ntot 0.05 0.10 0.15 0.20 0.25 ≥ 0.30

500 0.86 0.58 0.34 0.17 0.06 < .01
550 0.85 0.56 0.31 0.15 0.04 < .01
600 0.84 0.53 0.28 0.12 0.02 < .01
650 0.83 0.51 0.26 0.10 0.01 < .01
700 0.81 0.49 0.24 0.09 < .01 < .01
750 0.80 0.47 0.22 0.07 < .01 < .01
800 0.79 0.45 0.20 0.06 < .01 < .01
850 0.78 0.43 0.18 0.04 < .01 < .01
900 0.77 0.41 0.17 0.03 < .01 < .01
950 0.76 0.39 0.15 0.02 < .01 < .01

1000 0.75 0.38 0.14 0.01 < .01 < .01
1200 0.71 0.32 0.09 < .01 < .01 < .01
1400 0.68 0.27 0.06 < .01 < .01 < .01
1600 0.64 0.23 0.03 < .01 < .01 < .01
1800 0.61 0.20 0.01 < .01 < .01 < .01
2000 0.58 0.17 < .01 < .01 < .01 < .01
2200 0.56 0.15 < .01 < .01 < .01 < .01
2400 0.53 0.12 < .01 < .01 < .01 < .01
2600 0.51 0.10 < .01 < .01 < .01 < .01
2800 0.49 0.09 < .01 < .01 < .01 < .01
3000 0.47 0.07 < .01 < .01 < .01 < .01

Note. Some bounds may be too low to maintain the content and statistical
representativeness and need to be used with caution.
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Table 7: Parameters for Simulation Study 1

Parameter Name Value

Test information
Number of items on Form X
Number of items on Form Y
Relative length of the common item set V, k
Number of common items
Reliability coefficient, ρ(X,X ′) = ρ(Y, Y ′)

Population where Group 1 is from
Mean score on common items, µ1(V )
Variance of scores on common items, σ2

1(V )
aµ1(V )Mean score on Form X, µ(X) = k

Variance of scores on Form X, σ2(X) [Equation 8]
Covariance between X and V, σ(X,V ) [Equation 9 or 10]

Population where Group 2 is from
Mean score on common items, µ2(V ) [Equation 19]
Variance of scores on common items, σ2

2(V )
µ2(V )Mean score on Form Y, µ(Y ) = k

Variance of scores on Form Y, σ2(Y ) [Equation 8]
Covariance between Y and V, σ(Y, V ) [Equation 9 or 10]

Sample Size
Number of examinees taking Form X
Number of examinees taking Form Y

Group Differences
Effect size, ES

Non-Normality
Lognormal transformation

50
50
0.4
20
0.8

10
9

25
43.26923
13.84615
or 17.30769b

Variesc

9

Varies
43.26923
13.84615
or 17.30769

1,000
1,000

Varies

a The equation holds when the ratio of effective test lengths equals the ratio of
actual test lengths.
b Covariance between X and V varies when different types of common items
are used. For an external common items, it is 13.84615 by using Equation 9,
and for an internal common items, it is 17.30769 by using Equation 10. Similar
results apply to Y and V .
c Amount of group difference is reflected by mean score difference between two
populations on common items. To obtain ES levels of 0, 0.1, 0.2, 0.3, 0.4, 0.5,
0.75, and 1.0, the mean for Group 2 is lower than the mean for Group 1 by 3
ES score points according to Equation 19.
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Table 8: Modified k for Tables 5 and 6 based on Simulation Study 2 (ρ(X,X ′) =
0.8, Ntot = 2, 000, u = 0.10)

ES = 0 ES = 0.2 ES = 0.5

Using a set of external common items
Normal 0.4530 (0.0149) 0.5250 (0.0128) 0.6490 (0.0165)
Moderately Skewed 0.5920 (0.0136) 0.6540 (0.0114) 0.7670 (0.0149)
Extremely Skewed 0.7140 (0.0131) 0.7750 (0.0089) 0.8630 (0.0163)

Using a set of internal common items
Normal 0.1820 (0.0062) 0.2000 (0.0000) 0.2210 (0.0045)
Moderately Skewed 0.2800 (0.0000) 0.3000 (0.0000) 0.3240 (0.0082)
Extremely Skewed 0.3620 (0.0062) 0.3800 (0.0000) 0.4090 (0.0102)

Note. Because the test in simulation studies contains 50 items, k = 0.18 which
would give an integer solution for the number of common items needed to pro-
vide the target SEE is used as initial value when internal common items are
considered. Values in parenthesis are standard deviations of k over 20 replica-
tions.

Table 9: Modified numbers of common items needed based on Simulation Study
2 (total number of items on either Form X or Y is 50, ρ(X,X ′) = 0.8, Ntot =
2, 000, u = 0.10)

ES = 0 ES = 0.2 ES = 0.5

Using a set of external common items
Normal 23 27 33
Moderately Skewed 30 33 39
Extremely Skewed 36 39 44

Using a set of internal common items
Normal 10 10 12
Moderately Skewed 14 15 17
Extremely Skewed 19 19 21

Note. Numbers of common items needed are calculated by 50×k, where k’s are
displayed in Table 8. If the resulting number is not an integer, find the closest
integer that is bigger than it.
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Figure 1: ρ2(X,V ) as a function of ρ(X,X ′) and k
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Figure 2: Estimated SEE (ρ(X,X ′)=0.8, Ntot=2,000)
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Figure 4: Difference between analytic SEE and empirical SEE (normal distri-
bution, ρ(X,X ′) = 0.8, Ntot = 2, 000)
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Figure 5: Difference between analytic SEE and empirical SEE (positively skewed
distribution, ρ(X,X ′) = 0.8, Ntot = 2, 000)
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Figure 6: Difference between analytic SEE and empirical SEE (negatively
skewed distribution, ρ(X,X ′) = 0.8, Ntot = 2, 000)
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Figure 8: Modified numbers of common items needed (total number of items on
either Form X or Y is 50, ρ(X,X ′) = 0.8, Ntot = 2, 000, u = 0.10)
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