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Abstract

This study examined various model combinations and calibration procedures
for mixed format tests under different item response theory (IRT) models and
calibration methods. Using real data sets that consist of both dichotomous and
polytomous items, nine possibly applicable IRT model mixtures and two calibra-
tion procedures were compared based on traditional and alternative goodness-
of-fit statistics. Three dichotomous models and three polytomous models were
combined to analyze mixed format test using both simultaneous and separate
calibration methods. To assess goodness of fit, The PARSCALE’s G? was used.
In addition, two fit statistics proposed by Orlando and Thissen (2000) were ex-
tended to more general forms to enable the evaluation of fit for mixed format
tests. The results of this study indicated that the three parameter logistic model
combined with the generalized partial credit model among various IRT model
combinations led to the best fit to the given data sets, while the one parameter
logistic model had the largest number of misfitting items. In a comparison of
three fit statistics, some inconsistencies were found between traditional and new
indices for assessing the fit of IRT models to data. This study found that the
new indices indicated considerably better model fit than the traditional indices.
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1 Introduction

With the increasing use of tests that contain both multiple-choice and constructed-
response items, a great deal of research has been devoted to combining scores
from a mixture of different item formats — referred to in this study as a mixed
format test (e.g., Traub, 1993; Wainer & Thissen, 1993; Ercikan et al., 1998;
Sykes & Yen, 2000). Under the item response theory (IRT) framework, an im-
portant issue in the calibration of mixed format data is whether the different
item types (i.e., multiple-choice and constructed-response items) measure the
same construct. It has been reported that some large-scale operational mixed
format tests (e.g., Bennett, Rock, & Wang, 1991; Thissen, Wainer, & Wang,
1994) are nearly unidimensional with respect to the constructs that are mea-
sured, but others (e.g., Ercikan et al., 1998; Traub, 1993) are not (Kim, 2004).
In either case, theoretical models and estimation programs are available for cal-
ibrating items in a mixed format test. Even within unidimensional IRT models,
there can be a variety of model combinations because the use of multiple item
formats typically involves more than one IRT model.

Calibrating two different item types raises an issue of choosing a calibration
procedure, namely, the two types of item responses can be calibrated either
simultaneously or separately. Simultaneous calibration can be advantageous in
that the total number of items remains the same in estimation. By contrast, the
number of items is necessarily decreased in separate calibration since the full-
length test is divided into two shorter parts for the two item types. Lord (1980)
argued that test length in combination with sample size affects the quality of
parameter estimates. Hambleton and Cook (1983) suggested that at least 200
examinees and 20 items should be used for stable results of parameter estimates
when scaling multiple-choice items using IRT. In this sense, maintaining the
total number of items can enhance the estimation accuracy, particularly with a
small sample size. Another benefit of simultaneous calibration is that it requires
only a single run of an IRT estimation program. Simultaneous calibration may
consist of either a mixture of different models or a single model. Alternatively,
the two item types can be calibrated separately. Some measurement settings
might better match this approach. For example, the two item types are often
administered on two different occasions to the same group of examinees. Item
responses from the two separate administrations can then be combined together
for scaling or scoring purposes. In this case, separate calibrations of the two
item types may be preferred.

When various models and calibration procedures are available for a particu-
lar data set, one natural question that arises is which one to choose. One way to
assess the appropriateness of the chosen IRT model(s) and calibration procedure
is to conduct an analysis of model-data fit. Model-data fit is regarded as a useful
checking tool in model selection. As noted by many researchers (e.g., Hambleton
& Swaminathan, 1985), testing the goodness-of-fit of IRT models is relevant to
validating IRT applications. A common approach to assessing model-data fit is
to compare the observed performance of individual items for various ability sub-
groups with the predicted performance under the chosen model. Several studies
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proposed utilizing a chi-square approximation of goodness-of-fit statistics, in-
cluding Yen’s (1981) Q1 and Bock’s (1972) x? indices. For polytomous IRT
models, Muraki and Bock (1997) adopted a likelihood ratio chi-square statistic
as a measure of fit for each item, and the sum of these chi-square statistics
provides the likelihood ratio chi-square statistic for the whole test. However,
a number of problem arise in using traditional chi-square statistics as tests for
model-data fit in the IRT context. For example, theses chi-square type fit in-
dices are hardly defensible against the criticism that they tend to be sensitive
to test lengths and sample sizes leading to inflated Type I error rates.

Given the well-known problems associated with the traditional methods, al-
ternative approaches to assessing IRT model-data fit have been proposed and
successfully implemented in different applications (e.g., Donoghue & Hombo,
1999; Orlando & Thissen, 2000, 2003; Stone, 2000; Douglas & Cohen, 2001;
Glas & Suérez Falcon, 2003; Sinharay, Johnson, & Stern, 2006). Donoghue
and Hombo (1999) derived asymptotic distributions of the fit statistic under
the assumption that item parameters are known. They demonstrated that the
statistic behaved as expected under their restrictive assumption. Orlando and
Thissen (2000) proposed fit statistics, S — X? and S — G? (discussed more fully
later) based on joint likelihood distributions for each possible total score. They
pointed out that the grouping of respondents in the traditional goodness-of-fit
statistics is based on estimates that are model dependent, rather than on some
observable statistics such as the number correct score. Alternatively, the S — X?
and S — G? statistics are not dependent on the model-based trait estimates, but
on directly observable frequencies and thus are solely a function of data. Stone
(2000) used a resampling technique to determine the degrees of freedom and the
scale factor for accounting for the uncertainty in estimated item parameters. For
each replicated data set, the fit statistics, as well as the mean and the variance
of the empirical distribution of the statistic are computed. Then the scale factor
and the degrees of freedom are determined from the mean and the variance of
the empirical distribution. On the other hand, Glas and Sudrez Falcén (2003)
proposed Lagrange Multiplier (LM) procedure to solve the uncertainty in the
item parameter estimates and ability estimates in constructing the test statistic.
More recently, Sinharay, Johnson, and Stern (2006) applied the Bayesian Poste-
rior Predictive Model Checking (PPMC) procedure for evaluating model fit in
IRT. Using the PPMC method with the Markov Chain Monte Carlo (MCMC)
algorithm, they examined the performances of a number of discrepancy mea-
sures for assessing different aspects of fit of the common IRT models.

A number of simulation studies have been conducted to compare perfor-
mances of these goodness-of-fit indices, and Type I error rates and power have
been investigated. Stone and Zhang (2003) compared several different ap-
proaches to computing fit statistics including that of Bock (1972), Orlando
and Thissen (2000), Stone (2000), and Donoghue and Hombo (1999). They
found that the Orlando-Thissen and the Stone procedures had nominal Type
I error rates, while unacceptably low or high Type I error rates were observed
for the Donoghue-Hombo procedure and the Bock method. Glas and Suarez
Falcon (2003) compared Orlando and Thissen’s indices and their new proposal
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of the LM index with the usual log likelihood ratio 2. They concluded that
the Orlando-Thissen procedure had better overall characteristics than the LM
index while the LM procedure was clearly superior to Yen’s @J1. A general find-
ing from these comparative studies is that the new approaches (e.g., Orlando
and Thissen’s S — X2 and S — G?) appear to offer promising alternatives to
traditional methods (e.g., Yen’s @1 and Bock’s x?) for assessing goodness-of-fit
of IRT models. Despite a number of applications of the alternative approaches
to dichotomous response data, there is very little in the literature that addresses
applications of goodness-of-fit indices such as S — X? to tests consisting of both
dichotomous and polytomous items, which typically involve mixtures of different
IRT models.

Therefore, the purpose of this study was to evaluate various IRT model com-
binations and calibration procedures for mixed-format tests, and to assess the
appropriateness of the chosen IRT models and calibration procedure in terms
of the model-data fit using traditional and alternative goodness-of-fit indices.
For dichotomous items, one, two, and three parameter logistic (1PL, 2PL, and
3PL) models were considered. Among several polytomous models applicable to
mixed format tests, Samejima’s (1997) graded response (GR), Masters’ (Mas-
ters & Wright, 1997) partial credit (PC), and Muraki’s (1997) generalized partial
credit (GPC) models were assumed for constructed-response items in this study.
A variety of mixtures of these models were applied to real data sets and calibra-
tion was conducted both simultaneously and separately. The three fit statistics
used in this study included PARSCALE’s G? as a traditional index, and Or-
lando and Thissen’s (2000) S — X2 and S — G? as new fit indices. The original
forms of S — X? and S — G? were extended for use with a mix of dichotomous
and polytomous items in this study. Using the IRT models and fit indices under
consideration, this study addressed the following questions:

e Which of the IRT model combinations leads to the best model-data fit for
the given mixed format tests?

e How differently do the simultaneous and separate calibration procedures
affect model-data fit for data containing multiple item types?

e Do the traditional and new fit indices provide comparable results in the
evaluation of model-data fit?

2 Method

This section is organized as follows. First, data and dimensionality checking
tools used in this study are described. Next, various mixtures of IRT models
and estimation procedures for calibrating a mixture of two item types are pre-
sented. Finally, a brief mathematical presentation of the three item fit statistics
is provided.
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2.1 Data

The data sets used in this study consist of two parts, multiple-choice and
constructed-response tests. For the multiple-choice tests, national standard-
ization data for the Iowa Tests of Basic Skills (ITBS) Form M, Levels 13 and
14 (Hoover, Hieronymus, Frisbie, & Dunbar, 1996) for Reading Comprehen-
sion (Reading) and Math Problems and Diagrams (Math) were used. For the
constructed-response tests, data from the Constructed-Response Supplement to
the Towa Tests (Hoover, Hieronymus, Frisbie, & Dunbar, 1996) were included
in this study. These two tests were administered on different occasions; that
is, students took a set of multiple-choice items first and then the same group
of examinees took a set of constructed-response items as a supplement to the
multiple-choice test. Although both item types were not completed in a single
test administration, they were based on the same test specifications and designed
to assess the same overall construct for each subject; i.e., reading comprehen-
sion and math problem solving ability. The Reading test for Level 13 (Grade 7)
consists of 46 multiple-choice and 8 constructed-response items. Each multiple-
choice item has five alternatives. Four constructed-response items are rated on
a 3-point scale (0-2), and the other four constructed-response items are rated
on a 2-point scale (0-1). Then Math test for Level 14 (Grade 8) consists of 36
multiple-choice and 13 constructed-response items. Each multiple-choice item
in the Math test has five alternatives. Eleven constructed-response items are
rated on a 3-point scale (0-2), and the other two constructed-response items are
rated on a 2-point scale (0-1). Two separate data sets for Reading and Math
contained item responses for 500 examinees.

2.2 Assessments of Unidimensionality

Because unidimensionality is one of the critical assumptions in the IRT models
applied in this study, it is important to accurately assess the test structures prior
to applying unidimensional IRT models. Furthermore, in deciding whether two
item types can be calibrated together using unidimensional IRT models, the
main issue to be considered is whether the two item types assess the same
construct. In this study, two analytic procedures were used to assess the dimen-
sional structure of each data set. First, the unidimensionality assumption was
assessed by an examination of eigenvalues using factor analysis. When a rapid
drop occurs between the first and second eigenvalues, unidimensionality can be
approximately assumed. As an alternative approach, the Poly-DIMTEST (Li
& Stout, 1995) procedure, in which exploratory factor analysis results are em-
bedded to find item clusters (i.e., AT1, AT2, and PT), was used to test the
hypothesis of unidimensionality. Stout (1990) argued that the traditional IRT
assumptions of unidimensionality can be replaced by weaker assumptions of
essential unidimensionality. Essential unidimensionality is defined as the pres-
ence of one dominant dimension and one or more minor dimensions that have
relatively small influence on item scores (Stout, 1990). The Poly-DIMTEST
program was applied to the mixed format data containing responses for both
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dichotomous and polytomous items.

2.3 IRT Model Combinations and Calibration Procedures

Examinees’ responses to multiple-choice items were fitted by the 1PL, 2PL,
and 3PL models. For constructed-response items, categorical responses were
calibrated using the GR, PC, and GPC models. By combining these models,
the following model mixtures (3 dichotomous x 3 polytomous models) were
designed to analyze responses from the mixed format tests:

1PL and GR models,

e 1PL and PC models,

e 1PL and GPC models,

e 2PL and GR models,

e 2PL and PC models,

e 2PL and GPC models,

e 3PL and GR models,

e 3PL and PC models, and
e 3PL and GPC models.

For all the model combinations, both separate and simultaneous calibration
procedures were considered. Thus, a total of 18 estimation conditions (9 model
mixtures x 2 calibration procedures) were constructed and compared. The
relative performances of the 18 conditions were investigated by three fit statistics
at the individual item level as described in the next section.

The computer program PARSCALE (Muraki & Bock, 1997) was used to
estimate item parameters for the mixed tests. Based on suggestions from previ-
ous studies (e.g., Chen, 1995; DeMars, 2005), the following PARSCALE options
were employed to increase the precision of calibration. First, the number of EM
cycles was increased to 200 and the number of Newton cycles was set to zero.
Second, the number of quadrature points was set to 101. Third, prior distribu-
tions were used for item parameters. For estimation with GR or GPC models,
SSIGMA = 0.6 was used as a prior for a; while SSIGM A was set to a small
value close to zero for the PC model; the GPARM = 0.2 option was included
for the 3PL model.

2.4 Item Fit Statistics

To assess model-data fit for a mixture of multiple-choice and constructed-response
items, PARSCALE’s G2 was chosen to represent the traditional chi-square type
of fit statistics because this index is one of the most frequently used item fit
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statistics in practice. For alternative methods, the original forms of Orlando
and Thissen’s (2000) S — X2 and S — G? for dichotomous items were extended
to general forms for a mixture of the two item types.

2.4.1 PARSCALE’s G?

PPARSCALE provides a likelihood ratio chi-square statistic, G2, as an item fit
index. The G? statistic for item j is

=2 Z vaklnN ”1;”’“(9“)) (1)

w=1 k=0

where £k is the item score ranging from zero to the highest item score K;; W; is
the number of intervals left after neighboring intervals are merged, namely, the
total number of groups of examinees. For each interval w, the interval mean,
0., the observed frequency, Ywjk, the total number of examinees, N,;, and
the fitted response function, ij(gw), are computed. The degrees of freedom
of G? is equal to the number of intervals, W;, multiplied by K; — 1. Unlike
some other fit indices such as Yen’s (1981) @Q; index, PARSCALE’s G? does not
adjust the degrees of freedom for uncertainty for either the item or proficiency
parameters. As referenced in DeMars (2005), the rationale for the unadjusted
degrees of freedom with the G2 statistic can be found in Mislevy and Bock
(1990). Mislevy and Bock (1990) asserted that the residuals are not under
linear constraints so that there is no loss of degrees of freedom due to the fitting
of the item parameters.

2.4.2 Orlando and Thissen’s (2000) S — X2 and S — G?

In this study, extended forms of the S — X? and S — G? statistics were created
for polytomous items by transforming the original forms of the indices for di-
chotomous items. The generalized forms of S — X2 and S — G? for a mixture
of the two item types are

hmaz

Z Z jkh th)Q, (2)

h=hmin kj=1 Ejkn

and

hmax

= 2 Z Ojkn In E]Z: (3)

h=hmin kj=1

respectively. The observed proportions (O,,) and the expected proportions
(Ejgn) for item j, category k, and number-correct score group h are computed
from the data. In these generalized formulas, category K; varies depending on
the number of categories for each item. Using a recursive algorithm to obtain the
joint likelihood of achieving summed score h, the expected proportions (Ejxp,)
are computed as
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[ Pj(0)S} ,.0(0)do
Eipn = Ny, f Sh¢h(0];d9 , (4)

where N}, is the number of examinees with score h; Pjj is the item responses

category function for item j and category k; S;{ . is the posterior score dis-
tribution for score group h — k for a scale without item j; Sy, is the posterior
score distribution for score group h; and ¢(#) is the population distribution of
0. To compute S} and SZJ_ i for both dichotomous and polytomous items, the
generalized recursive algorithm proposed by Thissen, Pommerich, Billeaud and
Williams (1995) can be used. Because these statistics are based on the summed
score distributions in which all items are answered, only complete cases in each
data set were analyzed in calculating S — X2 and S — G?. Thus, 108 and 217 in-
complete cases were excluded from the original data sets for Reading and Math,
respectively. This occasionally led to reduced sample sizes in computing item
fit.

3 Results

The results from the assessment of dimensionality as a preliminary analysis
are presented first in this section. Then, the results of the principal analy-
ses are summarized according to the three research questions regarding (1) the
performance of the nine IRT model combinations, (2) simultaneous versus sep-
arate calibration procedures, and (3) the three indices assessing model-data
fit. Graphical results of model fit are demonstrated to provide insights about
misfitting items.

3.1 Assessments of Unidimensionality

Prior to applying unidimensional IRT models, the dimensional structures of the
mixed format tests were examined to assess whether the two item types measure
similar constructs. The results of the linear factor analyses and poly-DIMTEST
procedures are presented in Table 1. The eigenvalues of the first factor were 9.61
and 8.35 for the Reading and Math tests, respectively, which were considerably
greater than those for the remaining factors. These first components accounted
for 17.79% and 17.04% of the total variances for Reading and Math, respectively.
A rapid drop between the first and second eigenvalues suggested that there exists
a single dominant dimension in each test. From this factor analysis approach, it
seems reasonable to assume unidimensionality for each test. The results of poly-
DIMTEST were consistent with the findings from factor analyses. That is, it can
be seen that the unidimensionality hypothesis was retained from a T statistic
of -.79 and p-value of .787 for the Reading test. Similarly, the Math test was
also assumed to be unidimensional from a 7" statistic of .16 and a corresponding
p-value of .436 as shown in Table 1. These results indicate that the dichotomous
items were measuring the same construct as the polytomous items. Therefore,
based on these two procedures, the unidimensionality assumption for each test
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seems to be highly defensible, making it reasonable to proceed with further
analyses involving the use of unidimensional IRT models.

3.2 Performances of IRT Model Combinations

Item responses from the two mixed format tests for Reading and Math were
calibrated under 18 conditions. For each condition, the three item fit statis-
tics, S — X2, S — G?, and G?, were computed at the individual item level. A
significance level of .05 were used to examine misfitting items in this study.
Significant fit statistics indicate that item parameters differ across the observed
score groups and that the assumed model is not appropriate for the data.

Tables 2 and 3 present items flagged as misfitting at a significance level of
.05 according to the nine model mixtures by the two calibration procedures for
the Reading and Math tests, respectively. For the Reading test, items 1 through
46 are multiple-choice while the remaining items 47 through 54 are constructed-
response. For the Math test, items 1 through 36 are multiple-choice while items
37 through 49 are constructed-response type. Figure 1 graphically summarizes
numbers of misfitting items in the two tests. For the Reading test, estimation
failed to converge in the conditions of the 1PL/PC and 1PL/GPC models with
simultaneous calibration, and the three conditions involving the PC model with
separate calibration. Item parameters for the 1PL/GR models with simulta-
neous calibration were estimated using 210 EM cycles to ensure convergence.
Except for these six conditions, all estimations converged in PARSCALE within
35~50 EM cycles using a set of priors for item parameters as described earlier.
For the Math test summarized in Table 3, all estimations of the 18 conditions
converged in PARSCALE within 35~50 EM cycles using a set of prior for pa-
rameters as previously discussed.

In the Reading test, the overall pattern for the nine model mixtures in
simultaneous calibration indicated that the 3PL/GPC and 2PL/GPC models
led to the best fit to the given data set, while the 1PL/GR combination resulted
in the worst fit consistently over the three indices. For separate calibration, the
G? procedure yielded relatively more misfitting items. In contrast, the 2PL and
3PL combinations had no misfitting items according to S — X? and S — G2 for
separate calibration. Similarly, the math data set was best fit by the 3PL/GPC,
3PL/GR, 2PL/GPC, and 2PL/GR model combinations for both calibration
methods. The proportion of misfitting items was larger when the PC model
was combined with either the 2PL or 3PL model.

Comparing the three dichotomous models, model mixtures involving the 3PL
model tended to exhibit fewer misfitting items across the three indices in the
two tests regardless of the choice of the calibration procedure. Compared to the
model mixtures involving the 2PL or 3PL model, a considerably larger number
of items showed misfit in the conditions involving the 1PL model. For example,
only one item was detected as misfitting by G? and S — G2, and no item was
detected as misfitting by S — X? with the 3PL/GPC model combination of
simultaneous calibration for the Reading tests. By contrast, all items under the
1PL/GR model mixture turned out to be misfitting by G2, and seven items out
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of 54 items were found as misfitting by S — X? and S — G? for the Reading data
set. Comparing the three polytomous models, the GPC model exhibited fewer
numbers of misfitting items than the other models consistently for all three
fit indices. For example, no items showed misfit for any model combination
involving the GPC model, whereas several items were found to be misfitting
with the GR or PC models in simultaneous calibration using S — X2 for Reading
in Table 2.

3.3 Comparisons of Simultaneous and Separate Calibra-
tion Procedures

The fit of the items using various model combinations was compared under
both simultaneous and separate calibrations. Compared to simultaneous cali-
bration, separate calibration showed fewer misfitting items using S — X2 and
S —G? in the Reading test. That is, only two items were flagged as misfitting in
the 1IPL/GR and 1PL/GPC combinations, and all the other model conditions
showed no misfits in separate calibration by the two new fit indices. In contrast,
the calibration results for the Math test showed a slight tendency for the simul-
taneous calibration to have fewer misfitting items, particularly for the mixtures
that included the 1PL model. Items flagged as misfitting matched between the
two calibration conditions in the Reading data, but they did not match in the
Math data. For example, in the Reading test summarized in Table 2, items 29
and 46 were misfitting for the 1PL/GR combination for both simultaneous and
separate calibration procedures. By contrast, math item 11 was frequently de-
tected as misfitting in simultaneous calibrations, but not in separate calibration.
Comparing multiple-choice and constructed-response item sections in separate
calibrations, higher percentages of misfit were observed in the calibrations of
multiple-choice items over the two tests.

3.4 Comparisons of Item Fit Statistics

Three fit statistics were computed over the 18 estimation conditions for the two
data sets. For both tests, the number of misfitting items using the G? statistic
tended to be higher than the numbers of misfitting items found with the S — X?
and S—G? indices, with a few exceptional cases. For example, all items exhibited
misfit in the 1PL/GR combination using G2 for the Reading data, while 7(13%)
items showed misfit using S — X2 and S — G?. This different result for model-
data fit using G? seems to be related to possibly unstable estimation with the
particular model combination in PARSCALE. Because the statistic is based
on the estimated proficiency distribution, unstable estimation of 6 can result
in an inflated degree of misfit. In fact, estimation with the 1PL/GR models
required an increased number of EM cycles to obtain the converged solution.
The fit of items with the 1PL/GR combination was clearly improved when
they were calibrated with the more complex model mixtures, e.g., the 3PL/GR
combination.
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In terms of agreement among the three fit indices, the two new statistics
showed considerable agreement for the misfitting items. Within each calibration
method, items flagged for misfit by S — G? almost always overlapped with those
detected by S — X2 with only a few exceptions in the two tests. For example,
reading items 49, 52, and 53 were observed as misfitting in the 3PL/PC model
with the simultaneous calibration condition using S — X2, and they were also
identified as misfitting using S — G2. By contrast, the G? index did not produce
matching sets of misfit with the two new indices. As shown in Table 2, in
the simultaneous calibration condition of the Reading test with the 3PL/PC
combination, item 14 was flagged as misfitting using G2, but not using S — X2
and S — G2. Conversely, items 49, 52, and 53 were found to be misfitting using
S — X? and S — G2, but not using G2.

3.5 Graphical Examples of Item Fit Analysis

Graphical displays are useful in examining the discrepancy between observed
and expected proportions correct (Swaminathan, Hambleton, & Rogers, 2007).
Graphical examples of item fit analysis are shown in Figures 2 and 3. In these
plots, differences between observed and expected frequencies for each summed
score can be interpreted as degrees of model-data misfit. Figure 2 presents
plots for dichotomously scored reading item 27 based on the three model com-
binations, 1PL/GR, 2PL/GR, and 3PL/GR. Among these model mixtures, the
2PL/GR and 3PL/GR combinations fit the data better than did the 1PL/GR
combination since they showed narrower distances between observed and ex-
pected frequencies over the summed scores at each score point. Figure 2 showed
the clear improvement in model fit of 2PL/GR over 1PL/GR, and the slight
additional improvement of 3PL/GR. over 2PL/GR. Similarly, Figure 3 enables
comparing the fit of competing models for polytomously scored reading item
49 at each category score. These plots illustrated the gradual improvement in
model fit of 3PL/GPC and 3PL/GR over 3PL/PC. This observation indicates
that the model combination with the GPC or GR model, rather than the PC
model, produced better model fit. Note that poor fit with 3PL/PC and good fit
with 3PL/GPC and 3PL/GR for item 49 were reported in Table 2. In general,
these plots suggest that the predictions of the test scores depend on IRT model
combinations.

4 Summary and Discussion

Using real test examples, this study addressed three issues related to model-
data fit in the mixed format tests. First, among various choices of the IRT
model combinations for analyzing the mixed format tests, results of this study
found that the 3PL or 2PL model with any of the polytomous models had fewer
misfitting items than the 1PL model with the polytomous models. For the poly-
tomous models, the GPC model tended to have slightly fewer misfitting items
than the PC or GR models in some conditions. Second, a comparative look
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at the results from the two calibration procedures indicated that the choice of
calibration procedure did not matter much in terms of model-data fit because
the results were mixed. Finally, in comparing the three fit statistics, the tradi-
tional fit index, G2, detected a somewhat different set of misfitting items for the
two data sets, while there was considerable overlap using the two alternative
statistics, S — X2 and S — G? that were extended to more general forms for this
study of mixtures of IRT models.

As for the performances of the various model mixtures, the results of this
study are consistent with findings in Swaminathan, Hambleton, and Rogers
(2007). A review of their study and the current study highlights the following
common conclusions: For dichotomous items, the 3PL model fits the data better
than the 2PL model, and both models fit the data better than the 1PL model.
For polytomous items, the GPC model fit the data better overall than did the
PC or GR model in some conditions. For the mixtures of dichotomous and
polytomous items, the GPC model in combination with either the 3PL or 2PL
model tended to fit the data best. Furthermore, a substantial improvement in
overall model-data fit was found from the 1PL/PC or 1PL/GR to the 2PL/GPC
model and the 3PL/GPC model combinations.

It should be noted that some model mixtures did not result in convergent
solutions when estimating item parameters for the Reading test. Several factors
could be associated with these estimation problems. Sample size may be a possi-
ble cause since IRT modeling requires a relatively large sample size, particularly
with polytomous models. In this sense, the sample of 500 examinees might be
considered to be too small for the purpose of evaluating model fit to the mixed
format test data. On the other hand, failures in estimation can be viewed as an
expected consequence of a bad fit according to the particular choice of model
combinations. In fact, these problems occurred when the 1PL and PC models
were fit to the Reading data set. Compared to the other models that allow
item slope or discrimination parameters to vary, the 1PL and PC models have
restrictive forms in that they include more constraints, i.e., a constant slope
parameter, in their model specifications.

Misfit for some model combinations may be associated with innate prop-
erties of the given test data, e.g., dimensional structure of data sets and item
characteristics. Since all of the IRT models considered in this study assumed
unidimensionality, poor model-data fit in some conditions could be attributable
to the fact that the assumption of unidimensionality was not fully satisfied even
though preliminary analyses concluded that the assumption was met for both
tests. Previous research indicates that dimensionality varies due to different
conditions, such as content area and item format. Ercikan et al.(1998) also
argued that the data structure of a mixed format test tends to be more mul-
tidimensional than a test involving single format items. This issue affects the
appropriateness of the use of unidimensional measurement models as well as
the interpretability of scores obtained by combining the two item types. Fur-
thermore, Yen (1984) has shown that multidimensionality is expected to have
a strong effect on the local independence of items as well as the fit of items
to unidimensional IRT models. In this case, unidimensional models might not
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fit the data properly. Another explanation for poor fit could be related to the
characteristics of the constructed-response items and the corresponding scoring
rubrics. A detailed examination of misfit at the individual item level revealed
that polytomous responses for some flagged constructed-response items became
essentially dichotomous item responses because a certain category was not likely
to occur as a response. Accordingly, these misfitting items had relatively low
information and showed unusual patterns of item categorical response functions
over the proficiency levels.

The results of the present study regarding the two calibration procedures
suggested that the predictions of the test scores and model-data fit depend on
the choice of a calibration method. Based on the two new fit statistics, simulta-
neous calibration led to slightly larger numbers of misfitting items than separate
calibration for Reading, while converse results were observed for Math. Using
real data sets, Ercikan et al. (1998) investigated psychometric properties (e.g.,
item fit, local item dependence, loss of information, and test information) for
multiple-choice and constructed-response sections under the hypothesis that the
two calibration procedures may perform differently if simultaneous calibration
of the two item types leads to a loss of information. Ercikan et al. (1998) found
that simultaneous calibration led to only negligibly small loss of information,
and concluded that the results of their study support use of simultaneous cal-
ibration by combining scores from the two item types. Since both their study
and the present study used only real data, useful future research would involve
a comprehensive simulation study to evaluate the relative performance of the
two calibration procedures in identifying misfitting items under various testing
conditions.

The results for the goodness-of-fit statistics support the recent contention
that the S — X2 and S — G? statistics can be good alternatives for the evalu-
ation of item fit, whereas the traditional G2 statistic often draws implausible
implications mainly with an unacceptably high proportion of items detected as
misfitting, especially for a short test as discussed in Orlando and Thissen (2000,
2003), Glas and Sudrez Falcén (2003), and Stone and Zhang (2003). However,
the findings reported in this study should not be generalized beyond the specific
measurement setting considered. Any decision on model-data fit has to account
for the specific application of IRT modeling associated with various testing fac-
tors. In fact, administrative characteristics of the data sets used in this study
could be more suitable to separate estimation since the two item types were
given to the examinees on two different occasions. Furthermore, different profi-
ciency distributions, sample sizes, estimation options, and subject matter could
have affected the results. For example, with large sample sizes, even small de-
viations from model predictions can be statistically significant resulting in a
large number of items flagged as misfitting. Therefore, the implications from
this study can be informative as an empirical example of the topic of assessing
IRT model-data fit for mixed format tests. To explore this issue further, it is
recommended that future research include simulation studies. Particularly, the
performances of the alternative item fit statistics need to be studied further for
use with various test forms through simulation studies.
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Table 1: Results of Factor Analyses and Poly-DIMTEST Procedures

Factor Analysis Poly-DIMTEST
Test Dimension Eigenvalue % of Variance T  p-value
Reading 1 9.61 17.79 -.79 787
2 1.89 3.50
3 1.56 2.89
Math 1 8.35 17.04 .16 436
2 1.83 3.73
3 1.77 3.62
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Table 2: Items Flagged as Misfitting in the Reading Test

S — X2 S —G? G?
Models Misfit N (%) Misfit N (%) Misfit N(%)
Simultaneous Calibration
1PL/GR 11, 23, 27, 7(13.0) 11, 23, 27, 7(13.0) All items 54(100)
29, 32, 39, 29, 32, 39,
46 46
1PL/PC N/A N/A N/A
1PL/GPC N/A N/A N/A
2PL/GR 3, 39, 54 3(5.6) 3, 54 2(3.7) 5-7, 14, 13(24.1)
15, 18, 26,
28, 35, 36,
38, 44, 54
2PL/PC 49, 52,53  3(5.6) 3,49, 52, 4(7.4) 14, 38, 44 3(5.6)
53
2PL/GPC 0(0.0) 3 1(1.9) 14, 38, 44 3(5.6)
3PL/GR 3, 39, 54 3(5.6) 3, 54 2(3.7) 14, 15,38,  5(9.3)
52, 54
3PL/PC 49, 52,53  3(5.6) 3,49, 52, 4(7.4) 14 1(1.9)
53
3PL/GPC 0(0.0) 3 1(1.9) 14 1(1.9)
Separate Calibration
1PL/GR 29, 46 2(3.7) 6, 29, 46 3(5.6) 6, 26, 28,  10(18.5)
29, 35, 46,
49-51, 53
1PL/PC N/A N/A N/A
1PL/GPC 29, 46 2(3.7) 6, 29, 46 3(5.6) 6, 26, 28,  10(18.5)
29, 35, 46,
49-51, 53
2PL/GR 0(0.0) 0(0.0) 38, 44, 6(11.1)
49-51, 53
2PL/PC N/A N/A N/A
2PL/GPC 0(0.0) 0(0.0) 38, 44 6(11.1)
49-51, 53
3PL/GR 0(0.0) 0(0.0) 5, 14, 38, 7(13.0)
49-51, 53
3PL/PC N/A N/A N/A
3PL/GPC 0(0.0) 0(0.0) 5, 14, 38, 7(13.0)
49-51, 53

Note. N/A indicates that parameter estimates were not available.
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Table 3: Items Flagged as Misfitting in the Math Test

S — X2 S —G? G?
Models Misfit N(%) Misfit N(%) Misfit N(%)
Simultaneous Calibration
1PL/GR 11 1(2.0) 5,11, 12 3(6.1) 2, 4,5, 8(16.3)
9, 10, 14,
18, 30
1PL/PC 11,12,39  3(6.1) 5,11,12,  4(8.2) 4,5,9, 8(16.3)
39 10, 14, 18,
19, 30
1PL/GPC 11 1(2.0) 5,11, 12 3(6.1) 4,5, 9, 8(16.3)
10, 14, 18,
19, 30
2PL/GR 0(0.0) 11, 12 2(4.1) 12,19,23  3(6.1)
2PL/PC 39 1(2.0) 11, 12 2(4.1) 19 1(2.0)
2PL/GPC 0(0.0) 11, 12 2(4.1) 19 1(2.0)
3PL/GR 0(0.0) 11, 12 2(4.1) 0(0.0)
3PL/PC 39 1(2.0) 0(0.0) 0(0.0)
3PL/GPC 0(0.0) 11, 12 2(4.1) 0(0.0)
Separate Calibration
1PL/GR 4,14, 18,  6(12.2) 4,10, 14,  7(14.3) 1, 4-6, 9, 15(30.6)
19, 30, 33 18, 19, 30, 10, 14, 15,
33 18, 23, 25,
26, 30, 32,
35
1PL/PC 4,14, 18,  7(14.3) 4,10, 14,  7(14.3) 1, 4-6, 9, 15(30.6)
19, 30, 33, 18, 19, 30, 10, 14, 15,
42 33 18, 23, 25,
26, 30, 32,
35
1PL/GPC 4,14, 18 6(12.2) 4,10, 14,  7(14.3) 1, 4-6, 9, 15(30.6)
19, 30, 33 18, 19, 30, 10, 14, 15,
33 18, 23, 25,
26, 30, 32,
35
2PL/GR 33 1(2.0) 19, 33 2(4.1) 12, 14, 19 3(6.1)
2PL/PC 33, 42 2(4.1) 19, 33 2(4.1) 12, 14, 19 3(6.1)
2PL/GPC 33 1(2.0) 19, 33 2(4.1) 12, 14, 19 3(6.1)
3PL/GR 33 1(2.0) 33 1(2.0) 1, 6, 10 3(6.1)
3PL/PC 33, 42 2(4.1) 33 1(2.0) 1, 6, 10 3(6.1)
3PL/GPC 33 1(2.0) 33 1(2.0) 1, 6, 10 3(6.1)
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Figure 1: Number of Misfitting Items for Reading and Math
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Figure 2: Differences of Observed and Expected Frequencies for Each Summed
Score of Reading Item 27 (Dichotomously Scored Item)
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Figure 3: Differences of Observed and Expected Frequencies for Each Summed
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